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A Proofs

A.1 Proof of Proposition 2

Some basic matrix algebra used in this proof is reviewed in Appendix F. The proof of the following
simple Lemma directly follows from the results therein.

Lemma 6. The following equalities hold:

1. (K+ ◦ L+ ◦M)++ =
(
K⊤

+ ◦ L
⊤
+ ◦M

)

++
= tr(K+ ◦L+ ◦M+) =

∑n
a=1 Ka+La+Ma+

2.
(
K+ ◦ L ◦M⊤

+

)

++
= (KLM)++

Now, we will take a kernel matrixM and consider its Hadamard product with̃K ◦ L̃:

K̃ ◦ L̃ ◦M = K ◦ L ◦M −
1

n




K ◦ L+ ◦M
︸ ︷︷ ︸

A

+K ◦ L⊤
+ ◦M

︸ ︷︷ ︸

A⊤

+K+ ◦ L ◦M
︸ ︷︷ ︸

B

+K⊤
+ ◦ L ◦M

︸ ︷︷ ︸

B⊤






+
1

n2
(K++L ◦M + L++K ◦M)

+
1

n2




K+ ◦ L+ ◦M
︸ ︷︷ ︸

C

+K⊤
+ ◦ L

⊤
+ ◦M

︸ ︷︷ ︸

C⊤

+K+ ◦ L
⊤
+ ◦M

︸ ︷︷ ︸

D

+K⊤
+ ◦ L+ ◦M

︸ ︷︷ ︸

D⊤






−
1

n3
K++

[
L+ ◦M + L⊤

+ ◦M
]
−

1

n3
L++

[
K+ ◦M +K⊤

+ ◦M
]

+
1

n4
K++L++M.

and thus:
(

K̃ ◦ L̃ ◦M
)

++
= (K ◦ L ◦M)++ −

2

n
((K ◦M)L+ (L ◦M)K)++

+
1

n2
[K++(L ◦M)++ + L++(K ◦M)++]

+
2

n2

[
tr(K+ ◦ L+ ◦M+) + (LMK)++

]

−
2

n3

[
K++ (LM)++ + L++(KM)++

]

+
1

n4
K++L++M++.

where we used thatA++ = ((K ◦M) ◦ L+)++ = ((K ◦M)L)++ , and similarlyB++ =
((L ◦M)K)++ . Also,C++ = tr(K+ ◦ L+ ◦M+) andD++ = (LMK)++.

By comparing to the table of V-statistics, we obtain that:

1

n2

(

K̃ ◦ L̃ ◦M
)

++
=

∥
∥
∥∆(Z)P̂

∥
∥
∥

2

k⊗l⊗m

where∆(Z)P̂ = P̂XY Z+P̂X P̂Y P̂Z−P̂Y ZP̂X−P̂XZP̂Y , which completes the proof of Proposition
2. Proposition 3 can be proved in an analogous way by including the additional terms corresponding

to centering ofM , i.e.,
(

K̃ ◦ L̃ ◦M+

)

++
and

(

K̃ ◦ L̃ ◦M++

)

++
. In the next Section, however,

we give an alternative proof which gives more insight into the role that the centering of each Gram
matrix plays.
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A.2 Proof of Proposition 3

It will be useful to introduce into notation the kernel centered at a probability measureν, given by:

k̃ν(z, z
′) := k(z, z′) +

ˆ ˆ

k(w,w′)dν(w)dν(w) −

ˆ

[k(z, w) + k(z′, w)] dν(w), (6)

Note that
´

k̃ν(z, z
′)dν(z)dν(z′) = 0, i.e.,µk̃ν

(ν) ≡ 0.

By expanding the population expression of the kernel norm ofthe joint under the kernels centered
at the marginals, we obtain:

‖PXY Z‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

=

ˆ ˆ [

k̃PX
(x, x′)l̃PY

(y, y′)m̃PZ
(z, z′)

]

dPXY Z(x, y, z)dPXY Z(x
′, y′, z′),

Substituting the definition of the centered kernel in (6), itis readily obtained that

‖PXY Z‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

= ‖∆LP‖
2
k⊗l⊗m .

Now, ‖PXY Z‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

is the first term in the expansion of‖∆LP‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

. Let us
show that all the other terms are equal to zero. Indeed, all the other terms are of the form

〈〈PWQ,Q′〉〉k̃PX
⊗l̃PY

⊗m̃PZ

,

whereW = X , Y , orZ (individual variable). Without loss of generality, letW = X . Then,

〈〈PXQ,Q′〉〉k̃PX
⊗l̃PY

⊗m̃PZ

=

ˆ ˆ ˆ [

k̃PX
(x, x′)l̃PY

(y, y′)m̃PZ
(z, z′)

]

dPX(x)dQ(y, z)dQ′(x′, y′, z′)

=

ˆ ˆ ˆ

k̃PX
(x, x′)dPX(x)

︸ ︷︷ ︸

=

[

µ
k̃PX

(PX )

]

(x′)=0

l̃PY
(y, y′)m̃PZ

(z, z′)

dQ(y, z)dQ′(x′, y′, z′)

= 0.

Therefore,

‖∆LP‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

= ‖PXY Z‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

= ‖∆LP‖
2
k⊗l⊗m .

The above is true for any joint distributionPXY Z , and in particular for the empirical joint, whereby:
∥
∥
∥∆LP̂

∥
∥
∥

2

k⊗l⊗m
=

∥
∥
∥P̂XY Z

∥
∥
∥

2

k̃
P̂X

⊗l̃
P̂Y

⊗m̃
P̂Z

=
1

n2

(

K̃ ◦ L̃ ◦ M̃
)

++
.

A.3 Proof of Proposition 4

Consider the element ofHk ⊗Hl ⊗ Hm given byEXY Zk(·, X)⊗ l(·, Y ) ⊗m(·, Z). This can be
identified with a Hilbert-Schmidt uncentered covariance operatorC(XY )Z : Hk ⊗Hl → Hm, such
that∀f ∈ Hk, g ∈ Hl, h ∈ Hm:

〈
C(XY )Z [f ⊗ g] , h

〉

Hm
= EXY Zf(X)g(Y )h(Z).

11



Table 3:V-statistics for various hypotheses

hypothesis V-statistic hypothesis V-statistic

(X,Y ) ⊥⊥ Z 1
n2

(

K ◦ L ◦ M̃
)

++
∆(X)P = 0 1

n2

(

K ◦ L̃ ◦ M̃
)

++

(X,Z) ⊥⊥ Y 1
n2

(

K ◦ L̃ ◦ M
)

++
∆(Y )P = 0 1

n2

(

K̃ ◦ L ◦ M̃
)

++

(Y, Z) ⊥⊥ X 1
n2

(

K̃ ◦ L ◦ M
)

++
∆(Z)P = 0 1

n2

(

K̃ ◦ L̃ ◦ M
)

++

∆LP = 0 1
n2

(

K̃ ◦ L̃ ◦ M̃
)

++

By replacingk, l,m with kernels centered at the marginals, we obtain a centeredcovariance operator
Σ(XY )Z , for which

〈
Σ(XY )Z [f ⊗ g] , h

〉

Hm
= EXY Z f̃(X)g̃(Y )h̃(Z)

= cov[f(X), g(Y ), h(Z)] ,

where we wrotef̃(X) = f(X) − Ef(X), and similarly forg̃ and h̃. Using the usual isometries
between Hilbert-Schmidt spaces and the tensor product spaces:

∥

∥Σ(XY )Z

∥

∥

2

HS

=
∥

∥

∥
EXY Z k̃PX

(·, X)⊗ l̃PY
(·, Y )⊗ m̃PZ

(·, Z)
∥

∥

∥

2

Hk⊗Hl⊗Hm

= ‖PXY Z‖
2
k̃PX

⊗l̃PY
⊗m̃PZ

= ‖∆LP‖2k⊗l⊗m .

Now, consider the supremum of the three-way covariance taken over the unit balls of respective
RKHSs:

sup
f,g,h

cov[f(X), g(Y ), h(Z)] = sup
f,g,h

〈
Σ(XY )Z [f ⊗ g] , h

〉

Hm

= sup
f,g

∥
∥Σ(XY )Z [f ⊗ g]

∥
∥
Hm

≤ sup
F∈Hk⊗Hl

∥
∥Σ(XY )ZF

∥
∥
Hm

=
∥
∥Σ(XY )Z

∥
∥
op
≤

∥
∥Σ(XY )Z

∥
∥
HS

.

and thus,‖∆LP‖k⊗l⊗m = 0 implies supf,g,h cov[f(X), g(Y ), h(Z)] = 0. Conversely, if
cov[f(X), g(Y ), h(Z)] = 0 ∀f, g, h, thenΣ(XY )Z [f ⊗ g] ≡ 0 ∀f, g, so the linear operatorΣ(XY )Z

vanishes.

B The effect of centering

In a two-variable test, either or both of the kernel matricescan be centered when computing the test

statistic since
(

K ◦ L̃
)

++
=

(

K̃ ◦ L
)

++
=

(

K̃ ◦ L̃
)

++
. To see this, simply note that by the

idempotence ofH ,

(

K ◦ L̃
)

++
= tr(KHLH)

= tr(KH2LH2)

= tr(HKH2LH)

= (HKH ◦HLH)++

=
(

K̃ ◦ L̃
)

++
. (7)
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Table 4:An example of Lancaster interaction measure vanishing for the case where neither variable is inde-
pendent of the other two.

P (0, 0, 0) = 0.2 P (0, 0, 1) = 0.1

P (0, 1, 0) = 0.1 P (0, 1, 1) = 0.1

P (1, 0, 0) = 0.1 P (1, 0, 1) = 0.1

P (1, 1, 0) = 0.1 P (1, 1, 1) = 0.2

This is no longer true in the three-variable case, where centering of each matrix has a different
meaning. Various hypotheses and their corresponding V-statistics are summarized in Table 3. Note
that the “composite” hypotheses are obtained simply by an appropriate centering of Gram matrices.

C ∆LP = 0 ; (X,Y ) ⊥⊥ Z ∨ (X,Z) ⊥⊥ Y ∨ (Y, Z) ⊥⊥ X .

Consider the following simple example with binary variablesX , Y , Z with the2×2×2 probability
table given in Table 4. It is readily checked that all conditional covariances are equal, so∆LP = 0.
It is also clear, however, that neither variable is independent of the other two. Therefore, a test for
Lancaster interactionper seis not equivalent to testing for the possibility of any factorization of the
joint distribution, but our empirical results suggest thatit can nonetheless provide a useful surrogate.
In other words, while rejection of the null hypothesis∆LP = 0 is highly informative and implies
that interaction is present andno non-trivial factorization of the joint distribution is available, the
acceptance of the null hypothesis should be considered carefully and additional methods to rule out
interaction should be sought.

D Permutation test

A permutation test for total independence is easy to construct: it suffices to compute the value

of the statistic (either the Lancaster statistic
∥
∥
∥∆LP̂

∥
∥
∥

2

k⊗l⊗m
or the total independence statistic

∥
∥
∥∆totP̂

∥
∥
∥

2

k⊗l⊗m
) on

{(
X(i), Y (σi), Z(τi)

)}n

i=1
, for randomly drawn independent permutations

σ, τ ∈ Sn in order to obtain a sample from the null distribution.

When testing foronly oneof the hypotheses(Y, Z) ⊥⊥ X , (X,Z) ⊥⊥ Y , or (X,Y ) ⊥⊥ Z, ei-
ther with a Lancaster statistic or with a standard two-variable kernel statistic, only one of the
samples should be permuted, e.g., if testing for(Y, Z) ⊥⊥ X , statistics should be computed on
{(

X(σi), Y (i), Z(i)
)}n

i=1
, for σ ∈ Sn. However, when testing for the disjunction of these hy-

potheses, i.e., for the existence of a nontrivial factorization of the joint distribution, we are within
a multiple hypothesis testing framework (even though one may deal with a single test statistic, as
in the Lancaster case). To ensure that the required confidence levelα = 0.05 is reached for the
factorization hypothesis, in the experiments reported in Figure 3, the Holm’s sequentially rejective
Bonferroni method [35] is used for both the two-variable based and for the Lancaster based factor-
ization tests. Namely,p-values are computed for each of the hypotheses(Y, Z) ⊥⊥ X , (X,Z) ⊥⊥ Y ,
or (X,Y ) ⊥⊥ Z using the permutation test, and sorted in the ascending order p(1), p(2), p(3). Hy-
potheses are then rejected sequentially ifp(l) <

α
4−l . The factorization hypothesis is then rejected if

and only if all three hypotheses are rejected.

E Asymptotic behavior

Using terminology from [26], kernelsk andk′ are said to be equivalent if they induce the same
semimetric on the domain, i.e.,k(x, x) + k(x′, x′)− 2k(x, x′) = k′(x, x) + k′(x′, x′)− 2k′(x, x′)
∀x, x′. It can be shown that the Lancaster statistic is invariant tochanging kernels within the kernel
equivalence class, i.e., that

∥
∥
∥∆LP̂

∥
∥
∥

2

k⊗l⊗m
=

∥
∥
∥∆LP̂

∥
∥
∥

2

k′⊗l′⊗m′

,
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wheneverk, k′, l, l′ andm,m′ are equivalent pairs. From here,
∥
∥
∥∆LP̂

∥
∥
∥

2

k⊗l⊗m
=

∥
∥
∥∆LP̂

∥
∥
∥

2

k̃PX
⊗l̃PY

⊗m̃PZ

.

In Section A.2, we were able to show a similar expression but only for changingk to its version
k̃P̂X

centered at theempirical marginal. Now, under the assumption of total independence, i.e., that

PXY Z = PXPY PZ , the dominating term in
∥
∥
∥∆LP̂

∥
∥
∥

2

k̃PX
⊗l̃PY

⊗m̃PZ

is
∥
∥
∥P̂XY Z

∥
∥
∥

2

k̃PX
⊗l̃PY

⊗m̃PZ

. By

standard arguments, under total independence, this converges in distribution to a sum of independent
chi-squared variables,

n
∥
∥
∥P̂XY Z

∥
∥
∥

2

k̃PX
⊗l̃PY

⊗m̃PZ

 

∞∑

a=1

∞∑

b=1

∞∑

c=1

λaηbθcN
2
abc, (8)

where{λa}, {ηb}, {θc} are, respectively, eigenvalues of integral operators associated tok̃PX
, l̃PY

andm̃PZ
, andNabc

i.i.d.
∼ N (0, 1). Other terms in

∥
∥
∥∆LP̂

∥
∥
∥

2

k̃PX
⊗l̃PY

⊗m̃PZ

can be shown to drop

to zero at a faster rate, as in the two-variable case. The resulting distribution of such a sum of
chi-squares can, in principle, be estimated using a Monte Carlo method, by computing a number
of eigenvalues ofK̃, L̃ andM̃ , as in [36, 18]. This is of little practical value though, as it is in
most cases simpler and faster to run a permutation test, as wedescribe in Appendix D. On the other
hand, the above result quantifies the highest order of bias ofthe V-statistic under total independence
to be equal to1n

∑∞
a=1 λa

∑∞
b=1 ηb

∑∞
c=1 θc, which can be estimated as1n4Tr(K̃)Tr(L̃)Tr(M̃).

We emphasize that (8) refers to anull distribution under total independence- if say, the null holds
because(X,Y ) ⊥⊥ Z, butX andY are dependent, one needs to instead consider a kernel onX ×Y
centered atPXY and the eigenvalues of its integral operator then replace{λaηb} (triple sum becomes
a double sum). This also implies that the bias term needs to becorrected appropriately.

F Some useful basic matrix algebra

Lemma 7. LetA, B ben× n matrices. The following results hold:

1. 1⊤
1 = n

2. [11⊤]ij = 1, ∀i, j, and thus
(
11

⊤)
++

= n2

3.
(
I − 1

n11
⊤)2 = I − 1

n11
⊤.

4. [A1]i = Ai+,
[
1
⊤A

]

j
= A+j

5. 1⊤A1 = A++

6.
(
A11⊤)

++
=

(
11

⊤A
)

++
= nA++

7. (αA+ βB)++ = αA++ + βB++

8.
(
A11⊤B

)

++
= A++B++.

Proof. (3):
(

I −
1

n
11

⊤
)2

= I −
2

n
11

⊤ +
1

n2
11

⊤
1

︸︷︷︸

n

1
⊤.

(8): From (4),
[
A11⊤B

]

ij
= Ai+B+j , implying

(
A11⊤B

)

++
=

n∑

i=1

Ai+

n∑

j=1

B+j = A++B++.
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Now, letK be a symmetric matrix, and denoteH = I − 1
n11

⊤ (the centering matrix). Then:

HKH =

(

I −
1

n
11

⊤
)

K

(

I −
1

n
11

⊤
)

= K −
1

n

(
K+ +K⊤

+

)
+

1

n2
K++11

⊤.

Note that:

(HKH)++ = K++ −
1

n

(

(K+)++ +
(
K⊤

+

)

++

)

+
1

n2
K++

(
11

⊤)
++

= K++ − 2K++ +K++ = 0.

Lemma 8. The following results hold:

1. A ◦ 11⊤ = 11
⊤ ◦A = A

2. (I ◦A)++ = tr(A)

3. (A ◦B)++ = tr(AB⊤)

4. For a symmetric matrixK and any matrixA, (A ◦K+)++ = (AK)++,
(
A ◦K⊤

+

)

++
=

(KA)++

5. For symmetric matricesK, L, (K+ ◦ L+)++ =
(
K⊤

+ ◦ L
⊤
+

)

++
= n (KL)++

6. For symmetric matricesK, L,
(
K+ ◦ L⊤

+

)

++
=

(
K⊤

+ ◦ L+

)

++
= K++L++.

Proof. (4):(A ◦K+)++ = tr
(
AK11

⊤) =
(
AK ◦ 11⊤)

++
= (AK)++ . (5): (K+ ◦ L+)++ =

(K+L)++ =
(
11

⊤KL
)

++
= n (KL)++ .

Proposition 9. DenoteH = I − 1
n11

⊤. Then:

(K ◦HLH)++ = (K ◦ L)++ −
2

n
(KL)++ +

1

n2
K++L++.

Proof. Let K andL be symmetric matrices and considerK ◦HLH . We obtain:

K ◦HLH = K ◦

(

L−
1

n

(
L+ + L⊤

+

)
+

1

n2
L++11

⊤
)

= K ◦ L−
1

n

(
K ◦ L+ +K ◦ L⊤

+

)
+

1

n2
L++K,

so that:

(K ◦HLH)++ = (K ◦ L)++ −
2

n
(KL)++ +

1

n2
K++L++.

Corollary 10. tr(HLH) = tr(L) − 1
nL++
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