
Appendices
A Table of Notation

Symbol Explanation
A Set of arms
⇥ Set of models
K Number of arms
m Number of models
J Number of episodes
n Number of steps per episode
t Time step
¯✓ Current model
⇥t Active set of models at time t
⌫i Distribution of arm i

µi(✓) Mean of arm i for model ✓
µ(✓) Vector of means of model ✓
µ̂i,t Estimate of µi(

¯✓) at time t
µ̂j
i (✓) Estimate of µi(✓) by RTP for model ✓ and arm i at episode j

bµj
(✓) Estimate of µ(✓) by RTP for model ✓ at episode j
⇥

j Estimated model of RTP after j episode
"j Uncertainty of the estimated model by RTP at episode j
"i,t Model uncertainty at time t
� Probability of failure

i⇤(✓) Best arm of model ✓
µ⇤(✓) Optimal value of model ✓
�i(✓) Arm gap of an arm i for a model ✓

�i(✓, ✓
0
) Model gap for an arm i between two models ✓ and ✓0

M
2

2

nd-order moment
M

3

3

rd-order moment
cM

2

Empirical 2nd-order moment
cM

3

Empirical 3rd-order moment
k · k Euclidean norm
k · kF Frobenius norm
k · k

max

Matrix max-norm
RJ Pseudo-regret
T j
i,n The number of pulls to arm i after n steps of episode j

A⇤(⇥
0
) Set of arms which are optimal for at least a model in a set ⇥0

⇥(A0
) Set of models for which the arms in A0 are optimal

⇥

+

Set of optimistic models for a given model ¯✓
A

+

Set of optimal arms corresponds to ⇥

+

W Whitening matrix of M
2

cW Empirical whitening matrix
T M

2

under the linear transformation W
bT cM

2

under the linear transformation cW
D Diagonal matrix consisting of the m largest eigenvalues of M

2

bD Diagonal matrix consisting of the m largest eigenvalues of cM
2

U K ⇥m matrix with the corresponding eigenvectors of D as its columns
bU K ⇥m matrix with the corresponding eigenvectors of bD as its columns

�(✓) Eigenvalue of T associated with ✓
v(✓) Eigenvector of T associated with ✓
b�(✓) Eigenvalue of bT associated with ✓

bv(✓) Eigenvector of bT associated with ✓
⌃M

2

Set of m largest eigenvalues of the matrix M
2

�
min

Minimum eigenvalue of M
2

among the m-largest
�
max

Maximum eigenvalue of M
2

�
max

Maximum eigenvalue of T
�� Minimum gap between the eigenvalues of M

2

C(⇥) O

✓
�
max

q
�
max

�3

min

⇣
�
max

��
+

1

�
min

+

1

�
max

⌘◆

⇡(✓) Permutation on ✓
Aj

⇤(✓) Set of non-dominated arms for model ✓ at episode j
e
⇥

j
+

Set of models that cannot be discarded at episode j

⇥

j
i,+ Set of models for which i is among the optimistic non-dominated arms at episode j
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B Proofs of Section 3

Lemma 1. mUCB never pulls arms which are not optimal for at least one model, that is 8i /2 A⇤(⇥),
T
i,n

= 0 with probability 1. Notice also that |A⇤(⇥)|  |⇥|.
Lemma 2. The actual model ¯✓ is never discarded with high-probability. Formally, the event E =

{8t = 1, . . . , n, ¯✓ 2 ⇥

t

} holds with probability P[E ] � 1� � if

"
i,t

=

s
1

2T
i,t�1

log

✓
mn2

�

◆
,

where T
i,t�1

is the number of pulls to arm i at the beginning of step t and m = |⇥|.

In the previous lemma we implicitly assumed that |⇥| = m  K. In general, the best choice in the
definition of "

i,t

has a logarithmic factor with min{|⇥|,K}.
Lemma 3. On event E , all the arms i /2 A⇤(⇥+

), i.e., arms which are not optimal for any of the
optimistic models, are never pulled, i.e., T

i,n

= 0 with probability 1� �.

The previous lemma suggests that mUCB tends to discard all the models in ⇥

+

from the most
optimistic down to the actual model ¯✓ which, on event E , is never discarded. As a result, even if
other models are still in ⇥

t

, the optimal arm of ¯✓ is pulled until the end. Finally, we show that the
model gaps of interest (see Thm. 1) are always bigger than the arm gaps.
Lemma 4. For any model ✓ 2 ⇥

+

, �
i⇤(✓)(✓,

¯✓) � �

i⇤(✓)(
¯✓).

Proof of Lem. 1. From the definition of the algorithm we notice that I
t

can only correspond to the
optimal arm i⇤ of one model in the set ⇥

t

. Since ⇥

t

can at most contain all the models in ⇥, all the
arms which are not optimal are never pulled.

Proof of Lem. 2. We compute the probability of the complementary event EC , that is that event on
which there exist at least one step t = 1, . . . , n where the true model ¯✓ is not in ⇥

t

. By definition of
⇥

t

, we have that

E = {8t, ¯✓ 2 ⇥

t

} = {8t, 8i 2 A, |µ
i

� µ̂
i,t

|  "
i,t

},

then

P[EC

] = P[9t, i, |µ
i

� µ̂
i,t

| � "
i,t

] 
nX

t=1

X

i2A
P[|µ

i

� µ̂
i,t

| � "
i,t

] =

nX

t=1

X

i2A⇤
(⇥)

P[|µ
i

� µ̂
i,t

| � "
i,t

]

where the upper-bounding is a simple union bound and the last passage comes from the fact that the
probability for the arms which are never pulled is always 0 according to Lem. 1. At time t, µ̂

i,t

is
the empirical average of the T

i,t�1

samples observed from arm i up to the beginning of round t. We
define the confidence "

i,t

as

"
i,t

=

s
1

2T
i,t�1

log

✓
|⇥|n↵

�

◆
,

where � 2 (0, 1) and ↵ is a constant chosen later. Since T
i,t�1

is a random variable, we need to take
an additional union bound over T

i,t�1

= 1, . . . , t� 1 thus obtaining

P[EC

] 
nX

t=1

X

i2A⇤
(⇥)

t�1X

Ti,t�1

=1

P[|µ
i

� µ̂
i,t

| � "
i,t

]


nX

t=1

X

i2A⇤
(⇥)

t�1X

Ti,t�1

=1

2 exp

�
� 2T

i,t�1

"2
i,t

�
 n(n� 1)

|A⇤
(⇥)|�

|⇥|n↵

.

Since |A⇤
(⇥)| < |⇥| (see Lem. 1) and by taking ↵ = 2 we finally have P[EC

]  �.

2



Proof of Lem. 3. On event E , ⇥
t

always contains the true model ¯✓, thus only models with larger
optimal value could be selected as the optimistic model ✓

t

= argmax

✓2⇥t µ⇤(✓), thus restricting
the focus of the algorithm only to the models in ⇥

+

and their respective optimal arms.

Proof of Lem. 4. By definition of ⇥

+

we have µ
i⇤(✓)(✓) = µ⇤(✓) > µ⇤(¯✓) and by definition of

optimal arm we have µ⇤(¯✓) > µ
i⇤(✓)(

¯✓), hence µ⇤(✓) > µ
i⇤(✓)(

¯✓). Recalling the definition of
model gap, we have �

i⇤(✓)(✓) = |µ
i⇤(✓)(✓) � µ

i⇤(✓)(
¯✓)| = µ⇤(✓) � µ

i⇤(✓)(
¯✓), where we used the

definition of µ⇤(✓) and the previous inequality. Using the definition of arm gap �

i

, we obtain
�

i⇤(✓)(✓,
¯✓) = µ⇤(✓)� µ

i⇤(✓)(
¯✓) � µ⇤(¯✓)� µ

i⇤(✓)(
¯✓) = �

i⇤(✓)(
¯✓),

which proves the statement.

Proof of Thm. 1. We decompose the expected regret as

E[R
n

] =

X

i2A
�

i

E[T
i,n

] =

X

i2A⇤(⇥)

�

i

E[T
i,n

]  nP{EC}+
X

i2A
+

�

i

E[T
i,n

|E ],

where the refinement on the sum over arms follows from Lem. 1 and 3 and the high probability event
E . In the following we drop the dependency on ¯✓ and we write µ

i

(

¯✓) = µ
i

.

We now bound the regret when the correct model is always included in ⇥

t

. On event E , only the
restricted set of optimistic models ⇥

+

= {✓ 2 ⇥ : µ⇤(✓) � µ⇤} is actually used by the algorithm.
Thus we need to compute the number of pulls to the suboptimal arms before all the models in ⇥

+

are discarded from ⇥

t

. We first compute the number of pulls to an arm i needed to discard a model
✓ on event E . We notice that

✓ 2 ⇥

t

, {8i 2 A, |µ
i

(✓)� µ̂
i,t

|  "
i,t

},
which means that a model ✓ is included only when all its means are compatible with the current
estimates. Since we consider event E , |µ

i

� µ̂
i,t

|  "
i,t

, thus ✓ 2 ⇥

t

only if for all i 2 A
2"

i,t

� �

i

(✓, ¯✓),

which corresponds to

T
i,t�1

 2

�

i

(✓, ¯✓)2
log

✓
|⇥|n2

�

◆
, (6)

which implies that if there exists at least one arm i for which at time t the number of pulls T
i,t

exceeds the previous quantity, then 8s > t we have ✓ /2 ⇥

t

(with probability P(E)). To obtain the
final bound on the regret, we recall that the algorithm first selects an optimistic model ✓

t

and then
it pulls the corresponding optimal arm until the optimistic model is not discarded. Thus we need to
compute the number of times the optimal arm of the optimistic model is pulled before the model is
discarded. More formally, since we know that on event E we have that T

i,n

= 0 for all i /2 A
+

,
the constraints of type (6) could only be applied to the arms i 2 A

+

. Let t be the last time arm i
is pulled, which coincides, by definition of the algorithm, with the last time any of the models in
⇥

+,i

= {✓ 2 ⇥

+

: i⇤(✓) = i} (i.e., the optimistic models recommending i as the optimal arm) is
included in ⇥

t

. Then we have that T
i,t�1

= T
i,n

� 1 and the fact that i is pulled corresponds to the
fact the a model ✓

i

2 ⇥

+,i

is such that
✓
i

2 ⇥

t

^ 8✓0 2 ⇥

t

, µ⇤(✓i) > µ⇤(✓
0
),

which implies that (see Eq. 6)

T
i,n

 2

min

✓2⇥

+,i �i

(✓, ¯✓)2
log

✓
|⇥|n2

�

◆
+ 1. (7)

where the minimum over ⇥

+,i

guarantees that all the optimistic models with optimal arm i are
actually discarded.
Grouping all the conditions, we obtain the expected regret

E[R
n

]  K +

X

i2A
+

2�

i

(

¯✓)

min

✓2⇥

+,i �i

(✓, ¯✓)2
log

�
|⇥|n3

�

with � = 1/n. Finally we can apply Lem. 4 which guarantees that for any ✓ 2 ⇥

+,i

the gaps
�

i

(✓, ¯✓) � �

i

(

¯✓) and obtain the final statement.
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Remark (proof). The proof of the theorem considers a worst case. In fact, while pulling the optimal
arm of the optimistic model i⇤(✓t) we do not consider that the algorithm might actually discard
other models, thus reducing ⇥

t

before the optimistic model is actually discarded. More formally,
we assume that for any ✓ 2 ⇥

t

not in ⇥

+,i

the number of steps needed to be discarded by pulling
i⇤(✓t) is larger than the number of pulls needed to discard ✓

t

itself, which corresponds to

min

✓2⇥

+,i

�

2

i

(✓, ¯✓) � max

✓2⇥

+

✓/2⇥

+,i

�

2

i

(✓, ¯✓).

Whenever this condition is not satisfied, the analysis is suboptimal since it does not fully exploit the
structure of the problem and mUCB is expected to perform better than predicted by the bound.

Remark (comparison to UCB with hypothesis testing). An alternative strategy is to pair UCB
with hypothesis testing of fixed confidence �. Let �

min

(

¯✓) = min

i

min

✓

�

i

(✓, ¯✓), if at time t there
exists an arm i such that T

i,t

> 2 log(2/�)�2

min

, then all the models ✓ 6= ¯✓ can be discarded with
probability 1 � �. Since from the point of view of the hypothesis testing the exploration strategy is
unknown, we can only assume that after ⌧ steps we have T

i,⌧

� ⌧/K for at least one arm i. Thus
after ⌧ > 2K log(2/�)/�2

min

steps, the hypothesis testing returns a model ˆ✓ which coincides with ¯✓

with probability 1� �. If ⌧  n, from time ⌧ on, the algorithm always pulls I
t

= i⇤(ˆ✓) and incurs a
zero regret with high probability. If we assume ⌧  n, the expected regret is

E[R
n

(UCB+Hyp)]  O

✓X

i2A

log n⌧

�

i

◆
 O

✓
K

log n⌧

�

◆
.

We notice that this algorithm only has a mild improvement w.r.t. standard UCB. In fact, in UCB the
big-O notation hides the constants corresponding to the exponent of n in the logarithmic term. This
suggests that whenever ⌧ is much smaller than n, then there might be a significant improvement. On
the other hand, since ⌧ has an inverse dependency w.r.t. �

min

, it is very easy to build model sets ⇥
where �

min

= 0 and obtain an algorithm with exactly the same performance as UCB.

C Sample Complexity Analysis of RTP

In this section we provide the full sample complexity analysis of the RTP algorithm. In our analysis
we rely on some results of Anandkumar et al. (2012b). Anandkumar et al. (2012b) have provided
perturbation bounds on the error of the orthonormal eigenvectors bv(✓) and the corresponding eigen-
values b�(✓) in terms of the perturbation error of the transformed tensor ✏ = kT � bTk (see Anand-
kumar et al., 2012b, Thm 5.1). However, this result does not provide us with the sample complexity
bound on the estimation error of model means. Here we complete their analysis by proving a sample
complexity bound on the `

2

-norm of the estimation error of the means kµ(✓)� bµ(✓)k.

We follow the following steps in our proof: (i) we bound the error ✏ in terms of the estimation errors
✏
2

:= kcM
2

� M
2

k and ✏
3

:= kcM
3

� M
3

k (Lem. 6). (ii) we prove high probability bounds on
the error ✏

2

and ✏
3

using some standard concentration inequality results (Lem. 7). The bounds on
the errors of the estimates bv(✓) and b�(✓) immediately follow from combining the results of Lem. 6,
Lem. 7 and Thm. 5. (iii) Based on these bounds we then prove our main result by bounding the
estimation error associated with the inverse transformation bµ(✓) = b�(✓) bBbv(✓) in high probability.

We begin by recalling the perturbation bound of Anandkumar et al. (2012b):
Theorem 5 (Anandkumar et al., 2012b). Pick ⌘ 2 (0, 1). Define W := UD�1/2, where D 2 Rm⇥m

is the diagonal matrix of the m largest eigenvalues of M
2

and U 2 RK⇥m is the matrix with the
eigenvectors associated with the m largest eigenvalues of M

2

as its columns. Then W is a linear
mapping which satisfies WTM

2

W = I. Let bT = T + E 2 Rm⇥m⇥m, where the 3

rd order
moment tensor T = M

3

(W,W,W ) is symmetric and orthogonally decomposable in the form ofP
✓2⇥

�(✓)v(✓)⌦3, where each �(✓) > 0 and {v(✓)}
✓

is an orthonormal basis. Define ✏ := kEk
and �

max

= max

✓

�(✓). Then there exist some constants C
1

, C
2

> 0, some polynomial function
f(·), and a permutation ⇡ on ⇥ such that the following holds w.p. 1� ⌘

kv(✓)� bv(⇡(✓))k  8✏/�(✓),

|�(✓)� b�(⇡(✓))|  5✏,
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for ✏  C
1

�

min

m

, L > log(1/⌘)f(k) and N � C
2

(log(k) + log log(�
max

/✏)), where N and L are
the internal parameters of RTP algorithm.

For ease of exposition we consider the RTP algorithm in asymptotic case, i.e., N,L ! 1 and
⌘ ⇡ 1. We now prove bounds on the perturbation error ✏ in terms of the estimation error ✏

2

and ✏
3

.
This requires bounding the error between W = UD�1/2 and cW =

bU bD�1/2 using the following
perturbation bounds on kU � bUk, k bD�1/2 �D�1/2k and k bD1/2 �D1/2k.
Lemma 5. Assume that ✏

2

 1/2min(�

�

,�
min

), then we have

k bD�1/2 �D�1/2k  2✏
2

(�
min

)

3/2

, and k bD1/2 �D1/2k  ✏
2

�
max

, and kbU �Uk  2

p
m✏

2

�

�

.

Proof. Here we just prove bounds on k bD�1/2 �D�1/2k and kbU � Uk. The bound on k bD�1/2 �
D�1/2k can be proven using a similar argument to that used for bounding k bD1/2 � D1/2k. Let
b
⌃

m

= {b�
1

, b�
2

, . . . , b�
m

} be the set of m largest eigenvalues of the matrix cM
2

. We have

k bD�1/2 �D�1/2k (1)

= max

1im

����

r
1

�
i

�
r

1

b�
i

���� = max

1im

0

@

��� 1

�i
� 1

b�i

���
q

1

�i
+

q
1

b�i

1

A

 max

1im

✓
p
�
i

����
1

�
i

� 1

b�
i

����

◆
 max

1im

����
�
i

� b�
ip

�
i

b�
i

����
(2)

 ✏
2p

�
min

(�
min

� ✏
2

)

(3)

 2✏
2

(�
min

)

3/2

,

where in (1) we use the fact that the spectral norm of matrix is its largest singular value, which in
case of a diagonal matrix coincides with its biggest element, in (2) we rely on the result of Weyl (see
Stewart and Sun, 1990, Thm. 4.11, p. 204) for bounding the difference between �

i

and b�
i

, and in
(3) we make use of the assumption that ✏

2

 1/2�
min

.

In the case of kU � bUk we rely on the perturbation bound of Wedin (1972). This result guarantees
that for any positive definite matrix A the difference between the eigenvectors of A and the perturbed
bA (also positive definite) is small whenever there is a minimum gap between the eigenvalues of bA
and A. More precisely, for any positive definite matrix A and bA such that ||A � bA||  ✏

A

, let the
minimum eigengap be �

A$ b
A

:= min

j 6=i

|�
i

� b�
j

|, then we have

ku
i

� bu
i

k  ✏
A

�

A$ b
A

, (8)

where (u
i

,�
i

) is an eigenvalue/vector pair for the matrix A. Based on this result we now bound the
error kU � bUk

kU � bUk  kU � bUk
F


sX

i

ku
i

� bu
i

k2
(1)


p
m✏

2

�

M

2

$c
M

2

(2)


p
m✏

2

�

�

� ✏
2

(3)

 2

p
m✏

2

�

�

,

where in (1) we rely on Eq. 8 and in (2) we rely on the definition of the gap as well as Weyl’s
inequality. Finally, in (3) We rely on the fact that ✏

2

 1/2�
�

for bounding denominator from
below.

Our result also holds for those cases where the multiplicity of some of the eigenvalues are greater
than 1. Note that for any eigenvalue � with multiplicity l the linear combination of the corresponding
eigenvectors {v

1

, v
2

, . . . , v
l

} is also an eigenvector of the matrix. Therefore, in this case it suffices
to bound the difference between the eigenspaces of two matrix. The result of Wedin (1972) again
applies to this case and bounds the difference between the eigenspaces in terms of the perturbation
✏
2

and �

�

.

We now bound ✏ in terms of ✏
2

and ✏
3

.
Lemma 6. Let µ

max

:= max

✓

kµ(✓)k, if ✏
2

 1/2min(�

�

,�
min

), then the estimation error ✏ is
bounded as

✏ 
✓

m

�
min

◆
3/2

✓
10✏

2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�
+ ✏

3

◆
.
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Proof. Based on the definitions of T and bT we have

✏ = kT � bTk = kM
3

(W,W,W )� cM
3

(

cW,cW,cW )k

 kM
3

(W,W,W )� cM
3

(W,W,W )k+ kcM
3

(W,W,W )� cM
3

(W,W,cW )k

+ kcM
3

(W,W,cW )� cM
3

(W,cW,cW )k+ kcM
3

(W,cW,cW )� cM
3

(

cW,cW,cW )k

= kE
M

3

(W,W,W )k+ kcM
3

(W,W,W �cW )k+ kcM
3

(W,W �cW,cW )k

+ kcM
3

(W �cW,cW,cW )k,

(9)

where E
M

3

= M
3

� cM
3

. We now bound the terms in the r.h.s. of Eq. 9 in terms of ✏
3

and ✏
2

. We
begin by bounding kE

M

3

(W,W,W )k:

kE
M

3

(W,W,W )k  kE
M

3

kkWk3  kE
M

3

kkUk3kD�1k3/2  kE
M

3

kkUk3
F

kD�1k3/2

(1)

=

✓
m

�
min

◆
3/2

kE
M

3

k 
✓

m

�
min

◆
3/2

✏
3

,
(10)

where in (1) we use the fact that U is an orthonormal matrix and D is diagonal. In the case of
kcM

3

(W,W,W �cW )k we have

kcM
3

(W,W,W �cW )k  kWk2kW �cWkkcM
3

k  kWk2kW �cWk(kcM
3

�M
3

k+ kM
3

k)
(1)

 kWk2kW �cWk(✏
3

+ µ3

max

)  kWk2kUD�1/2 � bU bD�1/2k(✏
3

+ µ3

max

)

 kWk2(k(U � bU)D�1/2k+ kbU(

bD�1/2 �D�1/2

)k)
�
✏
3

+ µ3

max

�

 kWk2
 
kU � bUk
p
�
min

+

p
mk bD�1/2 �D�1/2k

!
�
✏
3

+ µ3

max

�
.

where in (1) we use the definition of M
3

as a linear combination of the tensor product of the means
µ(✓). This result combined with the result of Lem. 5 and the fact that kWk 

p
m/�

min

(see
Eq. 10) implies that

kcM
3

(W,W,W �cW )k  m

�
min

✓
2

p
m✏

2

�

�

p
�
min

+

2

p
m✏

2

(�
min

)

3/2

◆�
✏
3

+ µ3

max

�

 2✏
2

✓
m

�
min

◆
3/2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�
.

(11)

Likewise one can prove the following perturbation bounds for cM
3

(W,W�cW,cW ) and cM
3

(W,W�
cW,cW ):

kcM
3

(W,W �cW,cW )k  2

p
2✏

2

✓
m

�
min

◆
3/2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�

kcM
3

(W �cW,cW,cW )k  4✏
2

✓
m

�
min

◆
3/2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�
.

(12)

The result then follows by plugging the bounds of Eq. 10, Eq. 11 and Eq. 12 into Eq. 9.

We now prove high-probability bounds on ✏
3

and ✏
2

when M
2

and M
3

are estimated by sampling.

Lemma 7. For any � 2 (0, 1), if cM
2

and cM
3

are computed with samples from j episodes, then we
that with probability 1� �:

✏
3

 K1.5

s
6 log(2K/�)

j
and ✏

2

 2K

s
log(2K/�)

j
.

Proof. Using some norm inequalities for the tensors we obtain

✏
3

= kM
3

� cM
3

k  K1.5kM
3

� cM
3

k
max

= K1.5

max

i,j,x

|[M
3

]

i,j,x

� [

cM
3

]

i,j,x

|.
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A similar argument leads to the bound of Kmax

i,j

|[M
2

]

i,j

� [

cM
2

]

i,j

| on ✏
2

. One can easily show
that, for every 1  i, j, x  K, the term [M

3

]

i,j,x

� [

cM
3

]

i,j,x

and [M
3

]

i,j,x

� [

cM
3

]

i,j,x

can be
expressed as a sum of martingale differences with the maximum value 1/j. The result then follows
by applying the Azuma’s inequality (e.g., see Cesa-Bianchi and Lugosi, 2006, appendix, pg. 361)
and taking the union bound.

We now draw our attention to the proof of our main result.

Proof of Thm. 2. We begin by deriving the condition of Eq. 5. The assumption on ✏
2

in Lem. 6 and
the result of Lem. 7 hold at the same time, w.p. 1� �, if the following inequality holds

2K

s
log(2K/�)

j
 1/2min(�

�

,�
min

).

By solving the bound w.r.t. j we obtain

j � 16K2

log(2K/�)

min(�

�

,�
min

)

2

. (13)

A similar argument applies in the case of the assumption on ✏ in Thm. 5. The results of Thm. 5 and
Lem. 6 hold at the same time if we have

" 
✓
mK

�
min

◆
3/2

✓
20✏

2

✓
1

�

�

+

1

�
min

◆
+ ✏

3

◆
 C

1

�
min

m
,

where in the first inequality we used that "
3

 K3/2 and µ3

max

 K3/2 by their respective defini-
tions. This combined with high probability bounds of Lem. 7 on ✏

1

and ✏
2

implies
✓

m

�
min

◆
1.5

 
20K2.5

s
log(4K/�)

j

✓
1

�

�

+

1

�
min

◆
+K1.5

s
6 log(4K/�)

j

!
 C

1

�
min

m
.

By solving this bound w.r.t. j (and some simplifications) we obtain w.p. 1� �

j � 43

2m5K6

log(4K/�)

C
1

�3

min

�2

min

✓
1

�

�

+

1

�
min

◆
2

.

Combining this result with that of Eq.13 and taking the union bound leads to the bound of Eq. 5 on
the minimum number of samples.

We now draw our attention to the main result of the theorem. We begin by bounding kµ(✓) �
bµ(⇡(✓))k in terms of estimation error term ✏

3

and ✏
2

:

kµ(✓)� bµ(⇡(✓))k = k�(✓)Bv(✓)� b�(⇡(✓)) bBbv(⇡(✓))k
k(�(⇡(✓))� b�(✓))Bv(⇡(✓))k+ kb�(✓)(B � bB)v(⇡(✓))k+ kb�(✓) bB(v(⇡(✓))� bv(✓))k
|�(✓)� b�(⇡(✓))|kBk+ b�(⇡(✓))kB � bBk+ b�(⇡(✓))k bBkkv(✓)� bv(⇡(✓))k,

(14)

where in the last line we rely on the fact that both v(✓) and bv(⇡(✓)) are normalized vectors. We first
bound the term kB � bBk:

kB � bBk = kUD1/2 � bU bD1/2k  k(U � bU)D1/2k+ kbU(D1/2 � bD1/2

)k
(1)

 2

p
m✏

2

�
max

�

�

+

p
m✏

2

�
max


p
m✏

2

✓
2�

max

�

�

+

1

�
max

◆
,

where in (1) we make use of the result of Lem. 5. Furthermore, we have

k bBk = kbU bD1/2k 
p
mb�

max


p
m(�1/2

max

+ ✏
1/2

2

) 
p
m(�1/2

max

+ �
1/2

min

) 
p
2m�

max

,

where we used the condition on ✏
2

. This combined with Eq.14 and the result of Thm 5 and Lem. 6
implies
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kµ(⇡(✓))� bµ(✓)k
(1)

 5

p
m�

max

✏+
p
m✏

2

(�(✓) + ✏)

✓
2�

max

�

�

+

1

�
max

◆
+

8✏

�(✓)

p
2m�

max

(�(✓) + ✏)

(2)

 5

p
m�

max

✏+
p
m✏

2

⇣
�(✓) + 5C

1

�
min

m

⌘✓
2�

max

�

�

+

1

�
max

◆
+ 8

p
2m�

max

⇣
1 + 5C

1

�
min

m

⌘
✏

 5

p
m�

max

✓
m

�
min

◆
3/2

✓
10✏

2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�
+ ✏

3

◆

+

p
m✏

2

⇣
�(✓) + 5C

1

�
min

m

⌘✓
2�

max

�

�

+

1

�
max

◆

+ 8

p
2m�

max

✓
1 +

5C
1

m

◆✓
m

�
min

◆
3/2

✓
10✏

2

✓
1

�

�

+

1

�
min

◆�
✏
3

+ µ3

max

�
+ ✏

3

◆
.

where in (1) we used ||B||  p
m�

max

, the bound on b�(⇡(✓))  �(✓) + 5✏, kv(✓) � bv(⇡(✓))k 
8✏/�(✓), in (2) we used �(✓) = 1/

p
⇢(✓) � 1 and the condition that "  5C

1

�
min

/m. The result
then follows by combining this bound with the high probability bound of Lem. 7 and taking union
bound as well as collecting the terms.

D Proofs of Section 4.3

Lemma 8. At episode j, the arms i /2 Aj

⇤(⇥;

¯✓j) are never pulled, i.e., T
i,n

= 0.

Lemma 9. If umUCB is run with

"
i,t

=

s
1

2T
i,t�1

log

✓
2mKn2

�

◆
, "j = C(⇥)

s
1

j
log

✓
2mKJ

�

◆
, (15)

where C(⇥) is defined in Thm. 2, then the event E = E
1

\ E
2

is such that P[E ] � 1 � � where
E
1

= {8✓, t, i, |µ̂
i,t

� µ
i

(✓)|  "
i,t

} and E
2

= {8j, ✓, i, |µ̂j

i

(✓)� µ
i

(✓)|  "j}.

Notice that the event E implies that for any episode j and step t, the actual model is always in the
active set, i.e., ¯✓j 2 ⇥

j

t

.

Lemma 10. At episode j, all the arms i /2 Aj

+

(⇥

j

+

(

¯✓j); ¯✓j) are never pulled on event E , i.e.,
T
i,n

= 0 with probability 1� �.

Lemma 11. At episode j, the arms i 2 Aj

+

(⇥

j

+

(

¯✓j); ¯✓j) are never pulled more than with a UCB
strategy, i.e.,

T j

i,n

 2

�

i

(

¯✓j)2
log

✓
2mKn2

�

◆
+ 1, (16)

with probability 1� �.

Notice that for UCB the logarithmic term in the previous statement would be log(Kn2/�) which
would represent a negligible constant fraction improvement w.r.t. umUCB whenever the number of
models is of the same order of the number of arms.
Lemma 12. At episode j, for any model ✓ 2 (⇥

j

+

(

¯✓j)� e
⇥

j

(

¯✓j)) (i.e., an optimistic model that can
be discarded), the number of pulls to any arm i 2 Aj

+

(✓; ¯✓j) needed before discarding ✓ is

T j

i,n

 1

2

�
�

i

(✓, ¯✓j)/2� "j
�
2

log

✓
2mKn2

�

◆
+ 1, (17)

with probability 1� �.
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Proof of Lem. 8. We first notice that the algorithm only pulls arms recommended by a model ✓ 2
⇥

j

t

. Let ˆi⇤(✓) = argmax

i

Bj

t

(i; ✓) with ✓ 2 ⇥

j

t

, and i 2 Aj

⇤(✓; ¯✓
j

). According to the selection
process, we have

Bj

t

(i; ✓) < Bj

t

(

ˆi⇤; ✓).

Since ✓ 2 ⇥

j

t

we have that for any i, |µ̂
i,t

�µ̂j

i

(✓)|  "
i,t

+"j which leads to µ̂j

i

(✓)�"j  µ̂
i,t

+"
i,t

.
Since µ̂j

i

(✓)� "j  µ̂j

i

(✓) + "j , then we have that
µ̂j

i

(✓)� "j  min{µ̂
i,t

+ "
i,t

, µ̂j

i

(✓) + "j} = Bj

t

(i; ✓).

Furthermore from the definition of the B-values we deduce that
Bj

t

(

ˆi⇤; ✓)  µ̂j

ˆ

i⇤
(✓) + "j .

Bringing together the previous inequalities, we obtain
µ̂j

i

(✓)� "j  µ̂j

ˆ

i⇤
(✓) + "j .

which is a contradiction with the definition of non-dominated arms Aj

⇤(⇥;

¯✓j).

Proof of Lem. 9. The probability of E
1

is computed in Lem. 2 with the difference that now we need
an extra union bound over all the models and that the union bound over the arms cannot be restricted
to the number of models. The probability of E

2

follows from Thm. 2.

Proof of Lem. 10. We first recall that on event E , at any episode j, the actual model ¯✓j is always in
the active set ⇥j

t

. If an arm i is pulled, then according to the selection strategy, there exists a model
✓ 2 ⇥

t

such that
Bj

t

(i; ✓) � Bj

t

(

ˆi⇤(¯✓
j

);

¯✓j).

Since ˆi⇤(¯✓j) = argmax

i

Bj

t

(i; ¯✓j), then Bj

t

(

ˆi⇤(¯✓
j

);

¯✓j) � Bj

t

(i⇤(¯✓
j

);

¯✓j) where i⇤(¯✓
j

) is the true
optimal arm of ¯✓j . By definition of B(i; ✓), on event E we have that Bj

t

(i⇤(¯✓
j

);

¯✓j) � µ⇤(¯✓
j

) and
that Bj

t

(i; ✓)  µ̂j

i

(✓) + "j . Grouping these inequalities we obtain
µ̂j

i

(✓) + "j � µ⇤(¯✓
j

),

which, together with Lem. 8, implies that i 2 Aj

+

(✓; ¯✓j) and that this set is not empty, which
corresponds to ✓ 2 ⇥

j

+

(

¯✓j).

Proof of Lem. 11. Let t be the last time arm i is pulled (T
i,t�1

= T
i,n

+ 1), then according to the
selection strategy we have

Bj

t

(i; ✓j
t

) � Bj

t

(

ˆi⇤(¯✓
j

);

¯✓j) � Bj

t

(i⇤; ¯✓
j

),

where i⇤ = i⇤(¯✓
j

). Using the definition of B, we have that on event E
Bj

t

(i⇤(¯✓
j

);

¯✓j) = min

�
(µ̂j

i⇤
(

¯✓j) + "j); (µ̂
i⇤,t + "

i⇤,t)
 
� µ⇤(¯✓

j

)

and
Bj

t

(i; ✓j
t

)  µ̂
i,t

+ "
i,t

 µ
i

(

¯✓j) + 2"
i,t

.

Bringing the two conditions together we have
µ
i

(

¯✓j) + 2"
i,t

� µ⇤(¯✓
j

) ) 2"
i,t

� �

i

(

¯✓j),

which coincides with the (high-probability) bound on the number of pulls for i using a UCB algo-
rithm and leads to the statement by definition of "

i,t

.

Proof of Lem. 12. According to Lem. 10, a model ✓ can only propose arms in Aj

+

(✓; ¯✓j). Similar to
the analysis of mUCB, ✓ is discarded from ⇥

j

t

with high probability after t steps and j episodes if
2("

i,t

+ "j)  �

i

(✓, ¯✓j).

At round j, if "j � �

i

(✓, ¯✓j)/2 then the algorithm will never be able to pull i enough to discard ✓

(i.e., the uncertainty on ✓ is too large), but since i 2 Aj

⇤(✓; ¯✓
j

), this corresponds to the case when
✓ 2 e

⇥

j

(

¯✓j). Thus, the condition on the number of pulls to i is derived from the inequality
"
i,t

 �

i

(✓, ¯✓j)/2� "j .
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E Related Work

As discussed in the introduction, transfer in online learning has been rarely studied. In this section
we review possible alternatives and a series of settings which are related to the problem we consider
in this paper.

Models estimation. Although in tUCB we use RTP for the estimation of the model means, a wide
number of other algorithms could be used, in particular those based on the method of moments
(MoM). Recently a great deal of progress has been made regarding the problem of parameter esti-
mation in LVM based on the method of moments approach (MoM) (Anandkumar et al., 2012c,a,b).
The main idea of MoM is to match the empirical moments of the data with the model parame-
ters that give rise to nearly the same corresponding population quantities. In general, matching the
model parameters to the observed moments may require solving systems of high-order polynomial
equations which is often computationally prohibitive. However, for a rich class of LVMs, it is pos-
sible to efficiently estimate the parameters only based on the low-order moments (up to the third
order) (Anandkumar et al., 2012c). Prior to RTP various scenarios for MoM are considered in the
literature for different classes of LVMs using different linear algebra techniques to deal with the em-
pirical moments Anandkumar et al. (2012c,a). The variant introduced in (Anandkumar et al., 2012c,
Algorithm B) recovers the matrix of the means {µ(✓)} up to a permutation in columns without any
knowledge of ⇢. Also, theoretical guarantees in the form of sample complexity bounds with poly-
nomial dependency on the parameters of interest have been provided for this algorithm. The excess
correlation analysis (ECA) (Alg. 5 in Anandkumar et al. (2012a)) generalizes the idea of the MoM
to the case that ⇢ is not fixed anymore but sampled from some Dirichlet distribution. The parameters
of this Dirichlet distribution is not to be known by the learner.6 In this case again we can apply a
variant of MoM to recover the models.

Online Multi-task. In the online multi-task learning the task change at each step (n = 1) but at the
end of each step both the true label (in the case of online binary classification) and the identity of the
task are revealed. A number of works (Dekel et al., 2006; Saha et al., 2011; Cavallanti et al., 2010;
Lugosi et al., 2009) focused on this setting and showed how the samples coming from different
tasks can be used to perform multi-task learning and improve the worst-case performance of an
online learning algorithm compared to using all the samples separately.

Contextual Bandit. In contextual bandit (e.g., see Agarwal et al., 2012; Langford and Zhang,
2007), at each step the learner observes a context x

t

and has to choose the arm which is best for
the context. The contexts belong to an arbitrary (finite or continuous) space and are drawn from a
stationary distribution. This scenario resembles our setting where tasks arrive in a sequence and are
drawn from a ⇢. The main difference is that in our setting the learner does not observe explicitly the
context and it repeatedly interact with that context for n steps. Furthermore, in general in contextual
bandits some similarity between contexts is used, while here the models are completely independent.

Non-stationary Bandit. When the learning algorithm does not know when the actual change in the
task happens, then the problem reduces to learning in a piece-wise stationary environment. Garivier
and Moulines (2011) introduces a modified version of UCB using either a sliding window or dis-
counting to track the changing distributions and they show, when optimally tuned w.r.t. the number
of switches R, it achieves a (worst-case) expected regret of order O(

p
TR) over a total number of

steps T and R switches. Notice that this could be also considered as a partial transfer algorithm.
Even in the case when the switch is directly observed, if T is too short to learn from scratch and
to identify similarity with other previous tasks, one option is just to transfer the averages computed
before the switch. This clearly introduces a transfer bias that could be smaller than the regret cumu-
lated in the attempt of learning from scratch. This is not surprising since transfer is usually employed
whenever the number of samples that can be collected from the task at hand is relatively small. If we
applied this algorithm to our setting T = nJ and R = J , the corresponding performance would be
O(J

p
n), which matches the worst-case performance of UCB (and tUCB as well) on J tasks. This

result is not surprising since the advantage of knowing the switching points (every n steps) could
always be removed by carefully choosing the worst possible tasks. Nonetheless, whenever we are
not facing a worst case, the non-stationary UCB would have a much worse performance than tUCB.

6We only need to know sum of the parameters of the Dirichlet distribution ↵
0

.
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Figure 9: Complexity and per-episode regret of tUCB over tasks.

F Numerical Simulations

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6 Arm7
✓
1

0.9 0.75 0.45 0.55 0.58 0.61 0.65
✓
2

0.75 0.89 0.45 0.55 0.58 0.61 0.65
✓
3

0.2 0.23 0.45 0.35 0.3 0.18 0.25
✓
4

0.34 0.31 0.45 0.725 0.33 0.37 0.47
✓
5

0.6 0.5 0.45 0.35 0.95 0.9 0.8

Table 1: Models.

UCB UCB+ mUCB
✓
1

22.31 14.87 2.33
✓
2

23.32 15.58 8.48
✓
3

33.91 25.21 2.08
✓
4

17.91 11.17 3.48
✓
5

35.41 8.76 0
avg 26.57 15.11 3.27

Table 2: Complexity of UCB, UCB+, and mUCB.

In Table 1 we report the actual values of the means of the arms of the models in ⇥, while in Table 2
we compare the complexity of UCB, UCB+, and mUCB, for all the different models and on average.
Finally, the graphs in Fig. 9 are an extension up to J = 10000 of the performance of tUCB for
n = 5000 reported in the main text.
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