Expectation Propagation in Gaussian Process Dynamical Systems

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper

Authors

Marc Deisenroth, Shakir Mohamed

Abstract

Rich and complex time-series data, such as those generated from engineering sys- tems, financial markets, videos or neural recordings are now a common feature of modern data analysis. Explaining the phenomena underlying these diverse data sets requires flexible and accurate models. In this paper, we promote Gaussian process dynamical systems as a rich model class appropriate for such analysis. In particular, we present a message passing algorithm for approximate inference in GPDSs based on expectation propagation. By phrasing inference as a general mes- sage passing problem, we iterate forward-backward smoothing. We obtain more accurate posterior distributions over latent structures, resulting in improved pre- dictive performance compared to state-of-the-art GPDS smoothers, which are spe- cial cases of our general iterative message passing algorithm. Hence, we provide a unifying approach within which to contextualize message passing in GPDSs.