Multi-task Vector Field Learning

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper


Binbin Lin, Sen Yang, Chiyuan Zhang, Jieping Ye, Xiaofei He


Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the prediction functions and the vector fields simultaneously. MTVFL has the following key properties: (1) the vector fields we learned are close to the gradient fields of the prediction functions; (2) within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace; (3) the vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.