Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)
Qixia Jiang, Jun Zhu, Maosong Sun, Eric Xing
An effective strategy to exploit the supervising side information for discovering predictive topic representations is to impose discriminative constraints induced by such information on the posterior distributions under a topic model. This strategy has been adopted by a number of supervised topic models, such as MedLDA, which employs max-margin posterior constraints. However, unlike the likelihood-based supervised topic models, of which posterior inference can be carried out using the Bayes' rule, the max-margin posterior constraints have made Monte Carlo methods infeasible or at least not directly applicable, thereby limited the choice of inference algorithms to be based on variational approximation with strict mean field assumptions. In this paper, we develop two efficient Monte Carlo methods under much weaker assumptions for max-margin supervised topic models based on an importance sampler and a collapsed Gibbs sampler, respectively, in a convex dual formulation. We report thorough experimental results that compare our approach favorably against existing alternatives in both accuracy and efficiency.