Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)
Felipe Trevizan, Manuela Veloso
Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state to a goal state. Several approaches to manage uncertainty were proposed, e.g., consider all paths at once, perform determinization of actions, and sampling. In this paper, we introduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of Short-Sighted Probabilistic Planner (SSiPP) [ref] by proving that SSiPP always finishes and is asymptotically optimal under sufficient conditions on the structure of short-sighted SSPs. We empirically compare SSiPP using trajectory-based short-sighted SSPs with the winners of the previous probabilistic planning competitions and other state-of-the-art planners in the triangle tireworld problems. Trajectory-based SSiPP outperforms all the competitors and is the only planner able to scale up to problem number 60, a problem in which the optimal solution contains approximately $10^{70}$ states.