Gradient-based kernel method for feature extraction and variable selection

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper Supplemental

Authors

Kenji Fukumizu, Chenlei Leng

Abstract

We propose a novel kernel approach to dimension reduction for supervised learning: feature extraction and variable selection; the former constructs a small number of features from predictors, and the latter finds a subset of predictors. First, a method of linear feature extraction is proposed using the gradient of regression function, based on the recent development of the kernel method. In comparison with other existing methods, the proposed one has wide applicability without strong assumptions on the regressor or type of variables, and uses computationally simple eigendecomposition, thus applicable to large data sets. Second, in combination of a sparse penalty, the method is extended to variable selection, following the approach by Chen et al. (2010). Experimental results show that the proposed methods successfully find effective features and variables without parametric models.