Semi-supervised Eigenvectors for Locally-biased Learning

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper

Authors

Toke Hansen, Michael W. Mahoney

Abstract

In many applications, one has information, e.g., labels that are provided in a semi-supervised manner, about a specific target region of a large data set, and one wants to perform machine learning and data analysis tasks nearby that pre-specified target region. Locally-biased problems of this sort are particularly challenging for popular eigenvector-based machine learning and data analysis tools. At root, the reason is that eigenvectors are inherently global quantities. In this paper, we address this issue by providing a methodology to construct semi-supervised eigenvectors of a graph Laplacian, and we illustrate how these locally-biased eigenvectors can be used to perform locally-biased machine learning. These semi-supervised eigenvectors capture successively-orthogonalized directions of maximum variance, conditioned on being well-correlated with an input seed set of nodes that is assumed to be provided in a semi-supervised manner. We also provide several empirical examples demonstrating how these semi-supervised eigenvectors can be used to perform locally-biased learning.