Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)
Borja Balle, Mehryar Mohri
Many tasks in text and speech processing and computational biology require es- timating functions mapping strings to real numbers. A broad class of such func- tions can be deļ¬ned by weighted automata. Spectral methods based on the sin- gular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training sample drawn according to this same target distribution. In this paper, we show how spectral methods can be extended to the problem of learning a general weighted automaton from a sample generated by an arbitrary distribution. The main obstruction to this approach is that, in general, some entries of the Hankel matrix may be missing. We present a solution to this problem based on solving a constrained matrix completion problem. Combining these two ingredients, matrix completion and spectral method, a whole new family of algorithms for learning general weighted automata is obtained. We present generalization bounds for a particular algorithm in this family. The proofs rely on a joint stability analysis of matrix completion and spectral learning.