Hamming Distance Metric Learning

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper Supplemental

Authors

Mohammad Norouzi, David J. Fleet, Russ R. Salakhutdinov

Abstract

Motivated by large-scale multimedia applications we propose to learn mappings from high-dimensional data to binary codes that preserve semantic similarity. Binary codes are well suited to large-scale applications as they are storage efficient and permit exact sub-linear kNN search. The framework is applicable to broad families of mappings, and uses a flexible form of triplet ranking loss. We overcome discontinuous optimization of the discrete mappings by minimizing a piecewise-smooth upper bound on empirical loss, inspired by latent structural SVMs. We develop a new loss-augmented inference algorithm that is quadratic in the code length. We show strong retrieval performance on CIFAR-10 and MNIST, with promising classification results using no more than kNN on the binary codes.