Nonparanormal Belief Propagation (NPNBP)

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper

Authors

Gal Elidan, Cobi Cario

Abstract

The empirical success of the belief propagation approximate inference algorithm has inspired numerous theoretical and algorithmic advances. Yet, for continuous non-Gaussian domains performing belief propagation remains a challenging task: recent innovations such as nonparametric or kernel belief propagation, while useful, come with a substantial computational cost and offer little theoretical guarantees, even for tree structured models. In this work we present Nonparanormal BP for performing efficient inference on distributions parameterized by a Gaussian copulas network and any univariate marginals. For tree structured networks, our approach is guaranteed to be exact for this powerful class of non-Gaussian models. Importantly, the method is as efficient as standard Gaussian BP, and its convergence properties do not depend on the complexity of the univariate marginals, even when a nonparametric representation is used.