On the connections between saliency and tracking

Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)

Bibtex Metadata Paper Supplemental

Authors

Vijay Mahadevan, Nuno Vasconcelos

Abstract

A model connecting visual tracking and saliency has recently been proposed. This model is based on the saliency hypothesis for tracking which postulates that tracking is achieved by the top-down tuning, based on target features, of discriminant center-surround saliency mechanisms over time. In this work, we identify three main predictions that must hold if the hypothesis were true: 1) tracking reliability should be larger for salient than for non-salient targets, 2) tracking reliability should have a dependence on the defining variables of saliency, namely feature contrast and distractor heterogeneity, and must replicate the dependence of saliency on these variables, and 3) saliency and tracking can be implemented with common low level neural mechanisms. We confirm that the first two predictions hold by reporting results from a set of human behavior studies on the connection between saliency and tracking. We also show that the third prediction holds by constructing a common neurophysiologically plausible architecture that can computationally solve both saliency and tracking. This architecture is fully compliant with the standard physiological models of V1 and MT, and with what is known about attentional control in area LIP, while explaining the results of the human behavior experiments.