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Abstract

We address the problem of estimating the difference between two probability den-
sities. A naive approach is a two-step procedure of first estimating two densities
separately and then computing their difference. However, such a two-step proce-
dure does not necessarily work well because the first step is performed without re-
gard to the second step and thus a small estimation error incurred in the first stage
can cause a big error in the second stage. In this paper, we propose a single-shot
procedure for directly estimating the density difference without separately esti-
mating two densities. We derive a non-parametric finite-sample error bound for
the proposed single-shot density-difference estimator and show that it achieves the
optimal convergence rate. We then show how the proposed density-difference es-
timator can be utilized in L2-distance approximation. Finally, we experimentally
demonstrate the usefulness of the proposed method in robust distribution compar-
ison such as class-prior estimation and change-point detection.

1 Introduction

When estimating a quantity consisting of two elements, a two-stage approach of first estimating
the two elements separately and then approximating the target quantity based on the estimates of
the two elements often performs poorly, because the first stage is carried out without regard to the
second stage and thus a small estimation error incurred in the first stage can cause a big error in the
second stage. To cope with this problem, it would be more appropriate to directly estimate the target
quantity in a single-shot process without separately estimating the two elements.

A seminal example that follows this general idea is pattern recognition by the support vector ma-
chine [1]: Instead of separately estimating two probability distributions of patterns for positive and
negative classes, the support vector machine directly learns the boundary between the two classes
that is sufficient for pattern recognition. More recently, a problem of estimating the ratio of two
probability densities was tackled in a similar fashion [2, 3]: The ratio of two probability densities is
directly estimated without going through separate estimation of the two probability densities.

In this paper, we further explore this line of research, and propose a method for directly estimating
the difference between two probability densities in a single-shot process. Density differences would
be more desirable than density ratios because density ratios can diverge to infinity even under a
mild condition (e.g., two Gaussians [4]), whereas density differences are always finite as long as
each density is bounded. Density differences can be used for solving various machine learning tasks
such as class-balance estimation under class-prior change [5] and change-point detection in time
series [6].

For this density-difference estimation problem, we propose a single-shot method, called the least-
squares density-difference (LSDD) estimator, that directly estimates the density difference without
separately estimating two densities. LSDD is derived with in the framework of kernel regularized
least-squares estimation, and thus it inherits various useful properties: For example, the LSDD
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solution can be computed analytically in a computationally efficient and stable manner, and all
tuning parameters such as the kernel width and the regularization parameter can be systematically
and objectively optimized via cross-validation. We derive a finite-sample error bound for the LSDD
estimator and show that it achieves the optimal convergence rate in a non-parametric setup.

We then apply LSDD to L2-distance estimation and show that it is more accurate than the differ-
ence of KDEs, which tends to severely under-estimate the L2-distance [7]. Because the L2-distance
is more robust against outliers than the Kullback-Leibler divergence [8], the proposed L2-distance
estimator can lead to the paradigm of robust distribution comparison. We experimentally demon-
strate the usefulness of LSDD in semi-supervised class-prior estimation and unsupervised change
detection.

2 Density-Difference Estimation

In this section, we propose a single-shot method for estimating the difference between two proba-
bility densities from samples, and analyze its theoretical properties.

Problem Formulation and Naive Approach: First, we formulate the problem of density-
difference estimation. Suppose that we are given two sets of independent and identically distributed
samples X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 from probability distributions on R
d with densities

p(x) and p′(x), respectively. Our goal is to estimate the density difference,
f(x) := p(x)− p′(x),

from the samples X and X ′.

A naive approach to density-difference estimation is to use kernel density estimators (KDEs). How-
ever, we argue that the KDE-based density-difference estimator is not the best approach because
of its two-step nature. Intuitively, good density estimators tend to be smooth and thus the differ-
ence between such smooth density estimators tends to be over-smoothed as a density-difference
estimator [9]. To overcome this weakness, we give a single-shot procedure of directly estimating the
density difference f(x) without separately estimating the densities p(x) and p′(x).

Least-Squares Density-Difference Estimation: In our proposed approach, we fit a density-
difference model g(x) to the true density-difference function f(x) under the squared loss:

argmin
g

∫ (
g(x)− f(x)

)2

dx.

We use the following Gaussian kernel model as g(x):

g(x) =
n+n′∑
�=1

θ� exp

(
−‖x− c�‖2

2σ2

)
, (1)

where (c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′) are Gaussian kernel centers. If

n+ n′ is large, we may use only a subset of {x1, . . . ,xn,x
′
1, . . . ,x

′
n′} as Gaussian kernel centers.

For the model (1), the optimal parameter θ∗ is given by

θ∗ := argmin
θ

∫ (
g(x)− f(x)

)2

dx = argmin
θ

[
θ�Hθ − 2h�θ

]
= H−1h,

where H is the (n+ n′)× (n+ n′) matrix and h is the (n+ n′)-dimensional vector defined as

H�,�′ :=

∫
exp

(
−‖x− c�‖2

2σ2

)
exp

(
−‖x− c�′‖2

2σ2

)
dx = (πσ2)d/2 exp

(
−‖c� − c�′‖2

4σ2

)
,

h� :=

∫
exp

(
−‖x− c�‖2

2σ2

)
p(x)dx−

∫
exp

(
−‖x′ − c�‖2

2σ2

)
p′(x′)dx′.

Replacing the expectations in h by empirical estimators and adding an �2-regularizer to the objective
function, we arrive at the following optimization problem:

θ̂ := argmin
θ

[
θ�Hθ − 2ĥ

�
θ + λθ�θ

]
, (2)
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where λ (≥ 0) is the regularization parameter and ĥ is the (n+ n′)-dimensional vector defined as

ĥ� :=
1

n

n∑
i=1

exp

(
−‖xi − c�‖2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−‖x′

i′ − c�‖2
2σ2

)
.

Taking the derivative of the objective function in Eq.(2) and equating it to zero, we can obtain the
solution analytically as

θ̂ = (H + λI)
−1

ĥ,

where I denotes the identity matrix.

Finally, a density-difference estimator f̂(x), which we call the least-squares density-difference
(LSDD) estimator, is given as

f̂(x) =
n+n′∑
�=1

θ̂� exp

(
−‖x− c�‖2

2σ2

)
.

Non-Parametric Error Bound: Here, we theoretically analyze an estimation error of LSDD.

We assume n′ = n, and let Hγ be the reproducing kernel Hilbert space (RKHS) corresponding to
the Gaussian kernel with width γ: kγ(x,x′) = exp

(−‖x− x′‖2/γ2
)
. Let us consider a slightly

modified LSDD estimator that is more suitable for non-parametric error analysis1:

f̂ := argmin
g∈Hγ

[
‖g‖2L2(Rd) − 2

(
1

n

n∑
i=1

g(xi)− 1

n

n∑
i′=1

g(x′
i′)

)
+ λ‖g‖2Hγ

]
.

Then we have the following theorem:
Theorem 1. Suppose that there exists a constant M such that ‖p‖∞ ≤ M and ‖p′‖∞ ≤ M .
Suppose also that the density difference f = p − p′ is a member of Besov space with regularity α.
That is, f ∈ Bα

2,∞ where Bα
2,∞ is the Besov space with regularity α, and

‖f‖Bα
2,∞ := ‖f‖L2(Rd) + sup

t>0
(t−αωr,L2(Rd)(f, t)) < c for r = �α�+ 1,

where �α� denotes the largest integer less than or equal to α and ωr,L2(Rd) is the r-th modulus of
smoothness (see [10] for the definitions). Then, for all ε > 0 and p ∈ (0, 1), there exists a constant
K > 0 depending on M , c, ε, and p such that for all n ≥ 1, τ ≥ 1, and λ > 0, the LSDD estimator
f̂ in Hγ satisfies

‖f̂ − f‖2L2(Rd)+λ‖f̂‖2Hγ
≤ K

(
λγ−d+γ2α+

γ−(1−p)(1+ε)d

λpn
+
γ− 2(1−p)d

1+p (1+ε+ 1−p
4 )

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
with probability not less than 1− 4e−τ .

If we set λ = n− 2α+d
(2α+d)(1+p)+(ε−p+εp) and γ = n− 1

(2α+d)(1+p)+(ε−p+εp) , and take ε and p sufficiently
small, then we immediately have the following corollary.
Corollary 1. Suppose that the same assumptions as Theorem 1 hold. Then, for all ρ, ρ′ > 0, there
exists a constant K > 0 depending on M, c, ρ, and ρ′ such that, for all n ≥ 1 and τ ≥ 1, the
density-difference estimator f̂ with appropriate choice of γ and λ satisfies

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ
≤ K

(
n− 2α

2α+d+ρ + τn−1+ρ′)
with probability not less than 1− 4e−τ .

1More specifically, the regularizer is replaced from the squared �2-norm of parameters to the squared RKHS-
norm of a learned function, which is necessary to establish consistency. Nevertheless, we use the squared
�2-norm of parameters in experiments because it is simpler and seems to perform well in practice.
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Note that n− 2α
2α+d is the optimal learning rate to estimate a function in Bα

2,∞. Therefore, the density-
difference estimator with a Gaussian kernel achieves the optimal learning rate by appropriately
choosing the regularization parameter and the Gaussian width. Because the learning rate depends
on α, the LSDD estimator has adaptivity to the smoothness of the true function.

It is known that, if the naive KDE with a Gaussian kernel is used for estimating a probability density
with regularity α > 2, the optimal learning rate cannot be achieved [11, 12]. To achieve the optimal
rate by KDE, we should choose a kernel function specifically tailored to each regularity α [13].
However, such a kernel function is not non-negative and it is difficult to implement it in practice.
On the other hand, our LSDD estimator can always achieve the optimal learning rate for a Gaussian
kernel without regard to regularity α.

Model Selection by Cross-Validation: The above theoretical analysis showed the superiority of
LSDD. However, in practice, the performance of LSDD depends on the choice of models (i.e.,
the kernel width σ and the regularization parameter λ). Here, we show that the model can be
optimized by cross-validation (CV). More specifically, we first divide the samples X = {xi}ni=1

and X ′ = {x′
i′}n

′
i′=1 into T disjoint subsets {Xt}Tt=1 and {X ′

t}Tt=1, respectively. Then we obtain a
density-difference estimate f̂t(x) from X\Xt and X ′\X ′

t (i.e., all samples without Xt and X ′
t ), and

compute its hold-out error for Xt and X ′
t as

CV(t) :=

∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |

∑
x′∈X ′

t

f̂t(x
′),

where |X | denotes the number of elements in the set X . We repeat this hold-out validation proce-
dure for t = 1, . . . , T , and compute the average hold-out error. Finally, we choose the model that
minimizes the average hold-out error.

3 L2-Distance Estimation by LSDD

In this section, we consider the problem of approximating the L2-distance between p(x) and p′(x),

L2(p, p′) :=
∫

(p(x)− p′(x))2 dx,

from their independent and identically distributed samples X := {xi}ni=1 and X ′ := {x′
i′}n

′
i′=1.

For an equivalent expression L2(p, p′) =
∫
f(x)p(x)dx − ∫

f(x′)p′(x′)dx′, if we replace f(x)

with an LSDD estimator f̂(x) and approximate the expectations by empirical averages, we obtain
L2(p, p′) ≈ ĥ

�
θ̂. Similarly, for another expression L2(p, p′) =

∫
f(x)2dx, replacing f(x) with

an LSDD estimator f̂(x) gives L2(p, p′) ≈ θ̂
�
Hθ̂.

Although ĥ
�
θ̂ and θ̂

�
Hθ̂ themselves give approximations to L2(p, p′), we argue that the use of

their combination, defined by

L̂2(X ,X ′) := 2ĥ
�
θ̂ − θ̂

�
Hθ̂, (3)

is more sensible. To explain the reason, let us consider a generalized L2-distance estimator of the
form βĥ

�
θ̂ + (1 − β)θ̂

�
Hθ̂, where β is a real scalar. If the regularization parameter λ (≥ 0) is

small, this can be expressed as

βĥ
�
θ̂ + (1− β)θ̂

�
Hθ̂ = ĥ

�
H−1ĥ− λ(2− β)ĥ

�
H−2ĥ+ op(λ), (4)

where op denotes the probabilistic order. Thus, up to Op(λ), the bias introduced by regularization
(i.e., the second term in the right-hand side of Eq.(4) that depends on λ) can be eliminated if β = 2,
which yields Eq.(3). Note that, if no regularization is imposed (i.e., λ = 0), both ĥ

�
θ̂ and θ̂

�
Hθ̂

yield ĥ
�
H−1ĥ, the first term in the right-hand side of Eq.(4).
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Eq.(3) is actually equivalent to the negative of the optimal objective value of the LSDD optimization
problem without regularization (i.e., Eq.(2) with λ = 0). This can be naturally interpreted through a
lower bound of L2(p, p′) obtained by Legendre-Fenchel convex duality [14]:

L2(p, p′) = sup
g

[
2

(∫
g(x)p(x)dx−

∫
g(x′)p′(x′)dx′

)
−
∫

g(x)2dx

]
,

where the supremum is attained at g = f . If the expectations are replaced by empirical estima-
tors and the Gaussian kernel model (1) is used as g, the above optimization problem is reduced
to the LSDD objective function without regularization (see Eq.(2)). Thus, LSDD corresponds to
approximately maximizing the above lower bound and Eq.(3) is its maximum value.

Through eigenvalue decomposition of H , we can show that 2ĥ
�
θ̂ − θ̂

�
Hθ̂ ≥ ĥ

�
θ̂ ≥ θ̂

�
Hθ̂.

Thus, our approximator (3) is not less than the plain approximators ĥ
�
θ̂ and θ̂

�
Hθ̂.

4 Experiments

In this section, we experimentally demonstrate the usefulness of LSDD. A MATLAB R© implemen-
tation of LSDD used for experiments is available from

“http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LSDD/”.

Illustration: Let N(x;μ,Σ) be the multi-dimensional normal density with mean vector μ and
variance-covariance matrix Σ with respect to x, and let

p(x) = N(x; (μ, 0, . . . , 0)�, (4π)−1Id) and p′(x) = N(x; (0, 0, . . . , 0)�, (4π)−1Id).

We first illustrate how LSDD behaves under d = 1 and n = n′ = 200. We compare LSDD with
KDEi (KDE with two Gaussian widths chosen independently by least-squares cross-validation [15])
and KDEj (KDE with two Gaussian widths chosen jointly to minimize the LSDD criterion [9]). The
number of folds in cross-validation is set to 5 for all methods.

Figure 1 depicts density-difference estimation results obtained by LSDD, KDEi, and KDEj forμ = 0
(i.e., f(x) = p(x) − p′(x) = 0). The figure shows that LSDD and KDEj give accurate estimates
of the density difference f(x) = 0. On the other hand, the estimate obtained by KDEi is rather
fluctuated, although both densities are reasonably well approximated by KDEs. This illustrates an
advantage of directly estimating the density difference without going through separate estimation of
each density. Figure 2 depicts the results for μ = 0.5 (i.e., f(x) 	= 0), showing again that LSDD
performs well. KDEi and KDEj give the same estimation result for this dataset, which slightly
underestimates the peaks.

Next, we compare the performance ofL2-distance approximation based on LSDD, KDEi, and KDEj.
For μ = 0, 0.2, 0.4, 0.6, 0.8 and d = 1, 5, we draw n = n′ = 200 samples from the above p(x)
and p′(x). Figure 3 depicts the mean and standard error of estimated L2-distances over 1000 runs
as functions of mean μ. When d = 1 (Figure 3(a)), the LSDD-based L2-distance estimator gives
the most accurate estimates of the true L2-distance, whereas the KDEi-based L2-distance estimator
slightly underestimates the true L2-distance when μ is large. This is caused by the fact that KDE
tends to provide smooth density estimates (see Figure 2(b) again): Such smooth density estimates
are accurate as density estimates, but the difference of smooth density estimates yields a small L2-
distance estimate [7]. The KDEj-based L2-distance estimator tends to improve this drawback of
KDEi, but it still slightly underestimates the true L2-distance when μ is large.

When d = 5 (Figure 3(b)), the KDE-based L2-distance estimators even severely underestimate
the true L2-distance when μ is large. On the other hand, the LSDD-based L2-distance estimator
still gives reasonably accurate estimates of the true L2-distance even when d = 5. However, we
note that LSDD also slightly underestimates the true L2-distance when μ is large, because slight
underestimation tends to yield smaller variance and thus such stabilized solutions are more accurate
in terms of the bias-variance trade-off.

Semi-Supervised Class-Balance Estimation: In real-world pattern recognition tasks, changes in
class balance between the training and test phases are often observed. In such cases, naive classifier
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Figure 1: Estimation of density difference when μ = 0 (i.e., f(x) = p(x)− p′(x) = 0).
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Figure 2: Estimation of density difference when μ = 0.5 (i.e., f(x) = p(x)− p′(x) 	= 0).
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Figure 3: L2-distance estimation by LSDD, KDEi, and KDEj for n = n′ = 200 as functions of the
Gaussian mean μ. Means and standard errors over 1000 runs are plotted.

training produces significant estimation bias because the class balance in the training dataset does
not properly reflect that of the test dataset.

Here, we consider a binary pattern recognition task of classifying pattern x ∈ R
d to class y ∈

{+1,−1}. Our goal is to learn the class balance of a test dataset in a semi-supervised learning setup
where unlabeled test samples are provided in addition to labeled training samples [16]. The class
balance in the test set can be estimated by matching a mixture of class-wise training input densities,

qtest(x;π) := πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

to the test input density ptest(x) [5], where π ∈ [0, 1] is a mixing coefficient to learn. See Figure 4
for schematic illustration. Here, we use the L2-distance estimated by LSDD and the difference of
KDEs for this distribution matching. Note that, when LSDD is used to estimate the L2-distance,
separate estimation of ptrain(x|y = ±1) is not involved, but the difference between ptest(x) and
qtest(x;π) is directly estimated.

We use four UCI benchmark datasets (http://archive.ics.uci.edu/ml/), where we ran-
domly choose 10 labeled training samples from each class and 50 unlabeled test samples following
true class-prior π∗ = 0.1, 0.2, . . . , 0.9. Figure 6 plots the mean and standard error of the squared
difference between true and estimated class-balances π and the misclassification error by a weighted
�2-regularized least-squares classifier [17] with weighted cross-validation [18] over 1000 runs. The
results show that LSDD tends to provide better class-balance estimates than the KDEi-based, the
KDEj-based, and the EM-based methods [5], which are translated into lower classification errors.
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Unsupervised Change Detection: The objective of change detection is to discover abrupt prop-
erty changes behind time-series data. Let y(t) ∈ R

m be an m-dimensional time-series sample at
time t, and let Y (t) := [y(t)�,y(t + 1)�, . . . ,y(t + k − 1)�]� ∈ R

km be a subsequence of time
series at time t with length k. We treat the subsequence Y (t) as a sample, instead of a single point
y(t), by which time-dependent information can be incorporated naturally [6]. Let Y(t) be a set of r
retrospective subsequence samples starting at time t: Y(t) := {Y (t),Y (t+1), . . . ,Y (t+ r− 1)}.
Our strategy is to compute a certain dissimilarity measure between two consecutive segments Y(t)
and Y(t+r), and use it as the plausibility of change points (see Figure 5). As a dissimilarity measure,
we use the L2-distance estimated by LSDD and the Kullback-Leibler (KL) divergence estimated by
the KL importance estimation procedure (KLIEP) [2, 3]. We set k = 10 and r = 50.

First, we use the IPSJ SIG-SLP Corpora and Environments for Noisy Speech Recognition (CEN-
SREC) dataset (http://research.nii.ac.jp/src/en/CENSREC-1-C.html). This
dataset is provided by the National Institute of Informatics, Japan that records human voice in a
noisy environment such as a restaurant. The top graphs in Figure 7(a) display the original time-
series (true change points were manually annotated) and change scores obtained by KLIEP and
LSDD. The graphs show that the LSDD-based change score indicates the existence of change points
more clearly than the KLIEP-based change score.

Next, we use a dataset taken from the Human Activity Sensing Consortium (HASC) challenge
2011 (http://hasc.jp/hc2011/), which provides human activity information collected by
portable three-axis accelerometers. Because the orientation of the accelerometers is not necessarily
fixed, we take the �2-norm of the 3-dimensional data. The HASC dataset is relatively simple, so
we artificially added zero-mean Gaussian noise with standard deviation 5 at each time point with
probability 0.005. The top graphs in Figure 7(b) display the original time-series for a sequence of
actions “jog”, “stay”, “stair down”, “stay”, and “stair up” (there exists 4 change points at time 540,
1110, 1728, and 2286) and the change scores obtained by KLIEP and LSDD. The graphs show that
the LSDD score is much more stable and interpretable than the KLIEP score.

Finally, we compare the change-detection performance more systematically using the receiver op-
erating characteristic (ROC) curves (i.e., the false positive rate vs. the true positive rate) and the
area under the ROC curve (AUC) values. In addition to LSDD and KLIEP, we test the L2-distance
estimated by KDEi and KDEj and native change detection methods based on autoregressive models
(AR) [19], subspace identification (SI) [20], singular spectrum transformation (SST) [21], one-class
support vector machine (SVM) [22], kernel Fisher discriminant analysis (KFD) [23], and kernel
change-point detection (KCP) [24]. Tuning parameters included in these methods were manually op-
timized. For 10 datasets taken from each of the CENSREC and HASC data collections, mean ROC
curves and AUC values are displayed at the bottom of Figure 7(b). The results show that LSDD tends
to outperform other methods and is comparable to state-of-the-art native change-detection methods.

5 Conclusions

In this paper, we proposed a method for directly estimating the difference between two probability
density functions without density estimation. The proposed method, called the least-squares density-
difference (LSDD), was derived within the framework of kernel least-squares estimation, and its
solution can be computed analytically in a computationally efficient and stable manner. Furthermore,
LSDD is equipped with cross-validation, and thus all tuning parameters such as the kernel width and
the regularization parameter can be systematically and objectively optimized. We derived a finite-
sample error bound for LSDD in a non-parametric setup, and showed that it achieves the optimal
convergence rate. We also proposed an L2-distance estimator based on LSDD, which nicely cancels
a bias caused by regularization. Through experiments on class-prior estimation and change-point
detection, the usefulness of the proposed LSDD was demonstrated.
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(a) Australian dataset
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(b) Diabetes dataset
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(c) German dataset
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(d) Statlogheart dataset
Figure 6: Results of semi-supervised class-balance estimation. Top: Squared error of class balance
estimation. Bottom: Misclassification error by a weighted �2-regularized least-squares classifier.
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(a) Speech data
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(b) Accelerometer data
Figure 7: Results of unsupervised change detection. From top to bottom: Original time-series,
change scores obtained by KLIEP and LSDD, mean ROC curves over 10 datasets, and AUC values
for 10 datasets. The best method and comparable ones in terms of mean AUC values by the t-test at
the significance level 5% are indicated with boldface. “SE” stands for “Standard error”.
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