
Online Sum-Product Computation over Trees

Mark Herbster Stephen Pasteris
Department of Computer Science

University College London
London WC1E 6BT, England, UK
{m.herbster, s.pasteris}@cs.ucl.ac.uk

Fabio Vitale
Department of Computer Science

University of Milan
20135 Milan, Italy

fabio.vitale@unimi.it

Abstract

We consider the problem of performing efficient sum-product computations in an
online setting over a tree. A natural application of our methods is to compute
the marginal distribution at a vertex in a tree-structured Markov random field.
Belief propagation can be used to solve this problem, but requires time linear
in the size of the tree, and is therefore too slow in an online setting where we
are continuously receiving new data and computing individual marginals. With
our method we aim to update the data and compute marginals in time that is no
more than logarithmic in the size of the tree, and is often significantly less. We
accomplish this via a hierarchical covering structure that caches previous local
sum-product computations. Our contribution is three-fold: we i) give a linear time
algorithm to find an optimal hierarchical cover of a tree; ii) give a sum-product-
like algorithm to efficiently compute marginals with respect to this cover; and iii)
apply “i” and “ii” to find an efficient algorithm with a regret bound for the online
allocation problem in a multi-task setting.

1 Introduction
The use of graphical models [1, 2] is ubiquitous in machine learning. The application of the
batch sum-product algorithm to tree-structured graphical models, including hidden Markov mod-
els, Kalman filtering and turbo decoding, is surveyed in [3]. Our aim is to adapt these techniques to
an online setting.

In our online model we are given a tree and a fixed set of parameters. We then receive a poten-
tially unbounded online sequence of “prediction requests” and “data updates.” A prediction request
indicates a vertex for which we then return the posterior marginal at that vertex. Each data update
associates a new “factor” to that vertex. Classical belief propagation requires time linear in the size
of the tree for this task. Our algorithm requires time linear in the height of an optimal hierarchi-
cal cover of this tree. The height of the cover is in the worst case logarithmic in the size the tree.
Thus our per trial prediction/update time is at least an exponential improvement over classical belief
propagation.

The paper is structured as follows. In Section 2 we introduce our notation leading to our definition
of an optimal hierarchical cover. In Section 3 we give our optimal hierarchical covering algorithm.
In Section 4 we show how we may use this cover as a structure to cache computations in our sum-
product-like algorithm. Finally, in Section 5 we give a regret bound and a sketch of an application
of our techniques to an online multi-task allocation [4] problem.

Previous work. Pearl [5] introduced belief propagation for Bayes nets which computes marginals
in time linear in the size of the tree. In [6] an algorithm for the online setting was given for a Bayes
net on a tree T which required O(log |V (T)|) time per marginalization step, where |V (T)| is the
number of vertices in the tree. In this work we consider a Markov random field on a tree. We give
an algorithm whose performance is bounded by O(χ∗(T)). The term χ∗(T) is the height of our

1

optimal hierarchical cover which is upper bounded by O(min(log |V (T)|,diameter(T))), but may
in fact be exponentially smaller.

2 Hierarchical cover of a tree
In this section we introduce our notion of a hierarchical cover of a tree and its dual the decompo-
sition tree.

Graph-theoretical preliminaries. A graph G is a pair of sets (V,E) such that E is a set of
unordered pairs of distinct elements from V . The elements of V are called vertices and those of
E are called edges. In order to avoid ambiguities deriving from dealing with different graphs, in
some cases we will highlight the membership to graph G denoting these sets as V (G) and E(G)
respectively. With slight abuse of notation, by writing v ∈ G, we mean v ∈ V (G). S is a subgraph
G (we write S ⊆ G) iff V (S) ⊆ V (G) and E(S) = {(i, j) : i, j ∈ V (S), (i, j) ∈ E(G)}. Given
any subgraph S ⊆ G, we define its boundary (or inner border) ∂G(S) and its neighbourhood (or
outer border) NG(S) as: ∂G(S) := {i : i ∈ S, j /∈ S, (i, j) ∈ E(G)}, and NG(S) := {j : i ∈
S, j /∈ S, (i, j) ∈ E(G)}. With slight abuse of notation, NG(v) := NG({v}), and thus the degree
of a vertex v is |NG(v)|. Given any graph G, we define the set of its leaves as leaves(G) := {i ∈
G : |NG(i)| = 1}, and its interior G• := {i ∈ G : |NG(i)| #= 1}. A path P in a graph G is
defined by a sequence of distinct vertices 〈v1, v2, ..., vm〉 of G, such that for all i < m we have that
(vi, vi+1) ∈ E(G). In this case we say that v1 and vm are connected by the subgraph P . A tree T is a
graph in which for all v, w ∈ T there exists a unique path connecting v with w. In this paper we will
only consider trees with a non-empty edge set and thus the vertex set will always have a cardinality
of at least 2. The distance dT (v, w) between v, w ∈ T is the path length |E(P)|. The pair (T, r)
denotes a rooted tree T with root vertex r. Given a rooted tree (T, r) and any vertex i ∈ V (T), the
(proper) descendants of i are all vertices that can be connected with r via paths P ⊆ T containing
i (excluding i). Analogously, the (proper) ancestors of i are all vertices that lie on the path P ⊆ T
connecting i with r (excluding i). We denote the set of all descendants (resp. all ancestors) of i by
⇓r

T (i) (resp. ⇑r
T (i)). We shall omit the root r when it is clear from the context. Vertex i is the parent

(resp. child) of j, which is denoted by ↑r
T (j) (resp. i ∈ ↓r

T (j)) if (i, j) ∈ E(T) and i ∈ ⇑r
T (j) (resp.

i ∈ ⇓r
T (j)). Given a tree T we use the notation S ⊆ T only if S is a tree and subgraph of T . The

height of a rooted tree (T, r) is the maximum length of a path P ⊆ T connecting the root to any
vertex: hr(T) := maxv∈T dT (v, r). The diameter ∆(T) of a tree T is defined as the length of the
longest path between any two vertices in T .

2.1 The hierarchical cover of a tree
In this section we describe a splitting process that recursively decomposes a given tree T . A (de-
composition) tree (D, r) identifies this splitting process, generating a tree-structured collection S of
subtrees that hierarchically cover the given tree T .

This process recursively splits at each step a subtree of T (that we call a “component”) resulting from
some previous splits. More precisely, a subtree S ⊆ T is split into two or more subcomponents and
the decomposition of S depends only on the choice of a vertex v ∈ S•, which we call splitting
vertex, in the following way. The splitting vertex v ∈ S• of S induces the split set Ω(S, v) =
{S1, . . . , S|NS(v)|} which is the unique set of S’s subtrees which overlap at a vertex v, uniquely,
that represent a cover for S, i.e., it satisfies (i) ∪S′∈Ω(S,v) S′ = S and (ii) {v} = Si ∩ Sj for all
1 ≤ i < j ≤ |NS(v)|. Thus the split may be visualized by considering the forest F resulting from
removing a vertex from S, but afterwards each component S1, . . . , S|NS(v)| of F has the “removed
vertex” v added back to it. A component having only two vertices is called atomic, since it cannot
be split further. We indicate with Sv ⊆ T the component subtree whose splitting vertex is v, and
we denote atomic components by S(i,j), where E(S(i,j)) = {(i, j)}. We finally denote by S the
set of all component subtrees obtained by this splitting process. Since the method is recursive, we
can associate a rooted tree (D, r), with T ’s decomposition into a hierarchical cover, whose internal
vertices are the splitting vertices of the splitting process. Its leaves correspond to the single edges
(of E(T)) of each atomic component, and a vertex “parent-child” relation c ∈ ↓r

D(p) corresponds
to the “splits-into” relation Sc ∈ Ω(Sp, p) (see Figure 1).

We will now formalize the splitting process by defining the hierarchical cover S of a tree T , which
is a key concept used by our algorithm.

2

Definition 1. A hierarchical cover S of a tree T is a tree-structured collection of subtrees that
hierarchically cover the tree T satisfying the following three properties:

1. T ∈ S ,

2. for all S ∈ S with S• #= ∅ there exists an x ∈ S• such that Ω(S, x) ⊂ S ,

3. for all S, R ∈ S such that S #⊆ R and R #⊆ S, we have |V (R) ∩ V (S)| ≤ 1.

The above definition recursively generates a cover. The splitting process that generates a hierarchical
cover S of T is formalized as rooted tree (D, r) in the following definition.
Definition 2. If S is a hierarchical cover of T we define the associated decomposition tree (D, r)
as a rooted tree, whose vertex set V (D) := T • ∪ E(T) where D• = T • and leaves(D) = E(T),
such that the following three properties hold:

1. Sr = T ,

2. for all c, p ∈ D•, c ∈ ↓r
D(p) iff Sc ∈ Ω(Sp, p) ,

3. for all (c, p) ∈ E(T) 1, we have (c, p) ∈ ↓r
D(p) iff S(c,p) ∈ Ω(Sp, p) .

The following lemma shows that with any given hierarchical cover S it is possible to associate a
unique decomposition tree (D, r).
Lemma 3. A hierarchical cover S of T defines a unique decomposition tree (D, r) such that if
S ∈ S there exists a v ∈ V (D) such that S = Sv and if v, w ∈ V (D) and v #= w, then Sv #= Sw.

For a given hierarchical cover S in the following we define the height and the exposure: two
properties which measure different senses of the “size” of a cover. The height of a hierarchical cover
S is the height of the associated decomposition tree D. Note that the height of a decomposition tree
D may be exponentially smaller than the height of T , since, for example, it is not difficult to show
that there exists a decomposition tree isomorphic to a binary tree when the input tree T is a path
graph. If R ⊆ T and SR is a hierarchical cover of R, we define the exposure of SR (with respect to
tree T) as maxQ∈SR |∂T (Q)|. Thus the exposure is a measure relative to a “containing” tree (which
can be the input tree T itself) and the height is independent of any containing tree.

In Section 4 the covering subtrees correspond to cached “joint distributions,” which are defined on
the boundary vertices of the subtrees, and require memory exponential in the boundary size. Thus
we are interested in covers with small exposure.

We now define a measure of the optimal height with respect to a given exposure value.
Definition 4. A hierarchical cover with exposure at most k is called a k-hierarchical cover. Given
any subtree R ⊆ T , the k-decomposition potential χk(R) of R is the minimum height of all hierar-
chical covers of SR with exposure (with respect to T) not larger than k. The ∗-decomposition poten-
tial χ∗(R) is the minimum height of all hierarchical covers of R. If |∂T (R)| > k then χk(R) := ∞.

Let’s consider some examples. Given a star graph, i.e., a graph with a single central vertex and any
number of adjacent vertices, there is in fact only one possible hierarchical cover obtained by splitting
the central vertex so that χ∗(star) = 1. For path graphs, χ∗(path) = Θ(log |path|), as mentioned
above. An interesting example is a star with path graphs rather than single edges. Specifically, a
star-path may be formed by a set of |star-path|

log |star-path| path graphs P1, P2, . . . each with log |star-path|
edges. These path graphs are then joined at a central vertex. In this case we have χ∗(star-path) =
O(log log(|star-path|)); as each path has a hierarchical cover of height O(log log(|star-path|)), each
of these path covers may then be joined to create a cover of the star-path. In Theorem 6 we will
see the generic bound χ∗(T) ≤ O(min(∆(T), log |V (T)|)). The star-path thus illustrates that the
bound may be exponentially loose.

In Theorem 6 we will see that χ2(T) ≤ 2χ∗(T). Thus we may restrict our algorithm to hierarchical
covers with an exposure of 2 at very little cost in efficiency. Hence, we will now focus our attention
on 2-hierarchical covers.

2-Hierarchical covers. Given any element Q #= T in a 2-hierarchical cover of T then |∂T (Q)| ∈
{1, 2}. Consider the case in which ∂T (Q) = {v, w}, i.e. |∂T (Q)| = 2. Then Q can be specified by

1Observe that (c, p) ∈ E(T) implies c, p ∈ V (T) and (c, p) ∈ leaves(D).

3

the two vertices v, w and defined as follows: Q :=
[w

v

]
:= argmaxS⊆T (|V (S)| : v, w ∈ leaves(S)),

that is the maximal subtree of T , having v and w among its leaves.

Consider now the case in which ∂T (Q) = {w}, i.e. |∂T (Q)| = 1. Q is now defined as the T ’s
subtree containing vertex w together with all the descendents ⇓w

T (z) where z ∈ NT (w). Hence, a
subtree such as Q can be uniquely determined by the w’s neighbor z ∈ NT (w). In order to denote
subtree Q in this case we use the following notation: Q :=

[w
!z

]
. Observe that one can also represent

a “boundary one” subtree with the previous notation by writing Q :=
[w

"

]
, where # is any 2 chosen

leaf of T belonging to ⇓w
T (z) (see Figure 1).

(2, s)-Hierarchical covers. We now introduce the notion of (2, s)-hierarchical covers (which, for
simplicity, we shall also call (2, s)-covers) with respect to a rooted tree (T, s). This notion explicitly
depends on a given vertex s ∈ V (T), which, for the sake of simplicity, will be assumed to be a leaf
of T . (2, s)-Hierarchical covers are guaranteed to not be much larger than a 2-hierarchical cover
(see Theorem 6). They are also amenable to a bottom-up construction.

Definition 5. Given any subtree R ⊆ T , a 2-hierarchical cover SR is a (2, s)-hierarchical cover of
R if, for all S ∈ SR \ {T}, there exists v, w ∈ S where v ∈ ⇓s

T (w) such that (case 1: |∂T (Q)| = 1)
S =

[w
!v

]
, or (case 2: |∂T (Q)| = 2) S =

[w
v

]
. In the former case v ∈ ↓s

T (w). We define χ2
s(R) to be

the minimal height of any possible (2, s)-hierarchical cover of R ⊆ T .

Thus every subtree of a (2, s)-hierarchical cover is necessarily “oriented” with respect to a root s.

3 Computing an optimal hierarchical cover
From a “big picture” perspective, a (2, s)-hierarchical cover G is recursively constructed in a bottom-
up fashion: in the initialization phase G contains only the atomic components convering T , i.e. the
ones formed only by a pair of adjacent vertices of V (T). We have then at this stage |G| = |E(T)|.
Then G grows step by step through the addition of new covering subtrees of T . At each time step
t, at least one subtree of T is added to G. All the subtrees added at each step t must strictly contain
only subtrees added before step t.

We now introduce the formal description of our method for constructing a (2, s)-hierarchical cover
G. As we said, the construction of G proceeds in incremental steps. At each step t the method
operates on a tree Tt, whose vertices are part of V (T). The construction of Tt is accomplished
starting by Tt−1 (if t > 0) in such a way that V (Tt) ⊂ V (Tt−1), where T0 is set to be the subtree of
(T, s) containing the root and all the internal vertices.

During each step t all the while-loop instructions of Figure 1 are executed: (1) some vertices (the
black ones in Figure 1) are selected through a depth-first visit (during the backtracking steps) of
Tt starting from s 3, (2) for each selected vertex v, subtree Sv is obtained from merging subtrees
added to G in previous steps and overlapping at vertex v, (3) in order to create tree Tt+1 from
Tt the previously selected vertices of Tt are removed, (4) the edge set E(Tt+1) is created from
E(Tt) in such a way to preserve the Tt’s structure, but all the edges incident to the vertices removed
from V (Tt) (the black vertices Figure 1) in the while-loop step 3 need to be deleted. The possible
disconnection that would arise by the removal of these parts of Tt is avoided by completing the
construction of Et+1 through the addition of some new edges. These additional edges are not part
of E(T) and link each vertex v with its grand-parent in Tt if vertex v’s parent was deleted (see the
dashed line edges in Figure 1) during the construction of Tt+1 from Tt. In the final while-loop step
the variable t gets incremented by 1.

Basically, the key for obtaining optimality with this construction method can be explained with the
following observation. At each time step t, when we add a covering subtree Sv for some vertex
v ∈ V (Tt) selected by the algorithm (black vertices in Figure 1), the whole (2, s)-cover of Sv

becomes completely contained in G and its height is t + 1, which can be proven to be the minimum
possible height of a (2, s)-cover of Sv . Hence, at each time step t we construct the t + 1-th level
(in the hierarchical nested sense) of G in such a way to achieve local optimality for all elements
contained in all levels smaller or equal to t + 1. As the next theorem states, the running of the
algorithm is linear in |V (T)|.

2This representation is not necessarily unique, as if !1, !2 ∈ leaves(T)∩Q, we have
[

w
!1

]
=

[
w
!2

](
=

[
w
"z

])
.

3Observe that s is the unique vertex belonging to V (Tt) for all time steps t ≥ 0.

4

Theorem 6. Given a rooted tree (T, s), the algorithm in Figure 1 outputs G, an optimal (2, s)-
hierarchical cover in time linear in |V (T)| of height χ2

s(T) which is bounded as χ∗(T) ≤ χ2(T) ≤
χ2

s(T) ≤ 2χ∗(T) ≤ O(min(log |V (T)|,∆(T))) .

Before we provide the detailed description of the algorithm for constructing an optimal (2, s)-
hierarchical cover we need some ancillary definitions. We call a vertex v ∈ V (Tt) \ {s} mergeable
(at time t) if and only if either (i) v ∈ leaves(Tt) or (ii) v has a single child in Tt and that child is not
mergeable. If v ∈ V (Tt)\{s} is mergeable we write v ∈Mt. We also use the following shorthands
for making more intuitive our notation: We set ct

v := ↓s
Tt

(v) when |↓s
Tt

(v)| = 1, pt
v := ↑s

Tt
(v) when

v #= s and gt
v := ↑s

Tt
(pt

v) when v, pt
v #= s. Finally, given u, u′ ∈ V (T) such that u′ ∈ ⇓s

T (u), we
indicate with with ↓s

T (u 1→ u′) the child of u which is ancestor of u′ in T .

—————————————————————
Input: Rooted tree (T, s).
—————————————————————
Initialisation: T0 ← T • ∪ {s}; t ← 0;

G ←
¶[↑s

T (v)
v

]
: v ∈ V (T) \ {s}

©
.

—————————————————————
While

(
V (Tt) &= {s}

)

1. Construct Mt via depth-first search
of Tt from s.

2. For all v ∈Mt, merge as follows:
If v ∈ leaves(Tt) then

z ← ↓s
T (pt

v (→ v).

G ← G ∪
[

pt
v
"z

]
.

Else G ← G ∪
[pt

v
ct

v

]
.

3. V (Tt+1) ← V (Tt) \Mt.
4. E(Tt+1) ← {(v, pt

v) : v, pt
v ∈ V (Tt+1)}∪

{(v, gt
v) : v, gt

v ∈ V (Tt+1),

pt
v &∈ V (Tt+1)}.

5. t ← t + 1.

—————————————————————
Output: Optimal (2, s)-hierarchical cover G of T .
—————————————————————

!"

!!

!

"

#

$

%

&

' !$

!%

($

!"

!!

!

"

#

$

%

&

' !$

!%

(%

)
*

)
*

!+!+

!"

!

"

*

%

&

' !!
!$

!"

(+ !

"

#

$

%

&

' !"

!%

(!

!!

!#

))
*

!+!$

$

,-./01-23-45-26786(,-./01-23-45-26786(696(

:45-260;/.74<1-460;6(=-.5->?@-6A-./01-2

B<?/.--26>44-46/76/C-6D$E2FGH0-.>.1C01>@617A-.

/ /

/

Figure 1: Left: Pseudocode for the linear time construction algorithm for an optimal (2, s)-hierarchical cover.
Right: Pictorial explanation of the pseudocode and the details of the hierarchical cover.
In order to clarify the method, we describe some of the details of the cover and some merge operations that
are performed in the diagram. Vertex 1 is the root vertex s. In each component, depicted as enclosed in a
line, the black node is the splitting vertex, i.e., a mergeable vertex of the tree Tt. The boundary definition may
be clarified by highlighting, for instance, that ∂T (S2) = {4} and ∂T (S10) = {8, 12}. Subtree S2 contains
vertices 1, 2, 3 and 4. Vertex 2 is the splitting vertex of S2. Ω(S2, 2) = {S(1,2), S(2,3), S(2,4)}, i.e., at
time t = 0, S2 is formed by merging the three atomic subtrees S(1,2), S(2,3) and S(2,4), which were added
in the initialization step. These three subtrees overlap at only vertex 2, which is depicted in black because it
is mergeable in T0. For what concerns the decomposition tree (D, r), we have ↓r

D(5) = {(4, 5), 6}, which
implies that S5 is therefore formed by the atomic component S(4,5) and the non-atomic component S6. At time
t = 1, S12 is obtained by merging S10 together with S13, which have been both created at time t = 0. Observe
that in T1 vertex 12 is a leaf and the z variable in the while-loop step 2 is assigned to vertex 10 (v and and
pt

v is respectively vertex 12 and 8). Regarding the subtree representation with the square bracket notation we
can write, for instance, S2 =

[
1
4

]
and S12 =

[
8
"10

]
(≡

[
8
11

]
≡

[
8
14

]
). Observe that, according to the definition

of a (2, s)-hierarchical cover, we have 4 ∈ ⇓1
T (1) and 10 ∈ ↓1T (8). Finally, notice that the height of the

(2, s)-hierarchical cover of Sv is equal to t + 1 iff v is depicted in black in Tt.

4 Online marginalization
In this section we introduce our algorithm for efficiently computing marginals by summing over
products of variables in a tree topology. Formally our model is specified by a triple (T, Θ,D) where

5

T is a tree, Θ = (θe,l,m : e ∈ E(T), l ∈ INk, m ∈ INk) so that θe is a positive symmetric k × k
matrix and D = (dv,c : v ∈ V (T), c ∈ INk) is a |V (T)| × k matrix. In a probabilistic setting it
is natural to view each normalized θe as a stochastic symmetric “transition” matrix and the “data”
D as a right stochastic matrix corresponding to “beliefs” about k different labels at each vertex in
T . In our online setting Θ is a fixed parameter and D is changing over time and thus an element in
a sequence (D1, . . . ,Dt, . . .) where successive elements only differ in a single row. Thus at each
point at time we receive information at a single vertex.

In our intended application (see Section 5) of the model there is no necessary “randomness” in the
generation of the data. However the language of probability provides a natural metaphor we use for
our computed quantities. Thus a (k-ary) labeling of T is a vector µ ∈ L with L := INV (T)

k and its
“probability” with respect to (Θ,D) is

p(µ|Θ,D) :=
1
Z

∏

(i,j)∈E(T)

θ(i,j),µ(i),µ(j)

∏

v∈V (T)

dv,µ(v) , (1)

with the normalising constant Z :=
∑

µ∈L
∏

(i,j)∈E(T) θ(i,j),µ(i),µ(j)
∏

v∈V (T) dv,µ(v). We denote
the marginal probability at a vertex v as

p(v → a|Θ,D) :=
∑

µ∈L : µ(v)=a

p(µ|Θ,D) . (2)

Using the hierarchical cover for efficient online marginalization. In the previous section we
discussed a method to compute a hierarchical cover of a tree T with optimal height χ2

s(T) in time
linear in T . In this subsection we will show how these covering components form a covering set of
cached “marginals”’. So that we may either compute p(v → a|Θ,D) or update a single row of the
data matrix D and recompute the changed cached marginals all in time linear in χ2

s(T).
Definition 7. Given a tree S ⊆ T , the potential function, ψS

T : L(∂T (S)) → R with respect to
(Θ,D) is defined by:

ψS
T (µ̃) :=

∑

µ∈L(S) : µ(∂T (S))=µ̃

Ñ
∏

(v,w)∈E(S)

θ(v,w),µ(v),µ(w)

éÑ
∏

v∈S\∂T (S)

dv,µ(v)

é
(3)

Where L(X) := INX
k with X ⊆ V (T) is thus the restriction of L to X and likewise if µ ∈ L then

µ(X) ∈ L(X) is the restriction of µ to X . For each tree in our hierarchical cover S ∈ S we will
have an associated potential function. Intuitively each of these potential functions summarize the
information in their interior by the marginal function defined on their boundary. Thus trees S ∈ S
with a boundary size of 1 require k values to be cached, the “α” weights; while boundary size 2
trees requires k2 values, the “β” weights. This clarifies our motivation to find a cover with both
small height and exposure. We also cache γ weights that represent the product of α weights; these
weights allow efficient computation on high degree vertices. The set of cached values necessary for
fast online computation correspond to these three types of weights of which there is a linear quantity
and on any given update or marginalization step only O(χ2

s(T)) of them are accessed.

Definitions of weights and potentials. Given a tree T and a hierarchical cover S it is isomorphic to
a decomposition tree (D, r). The decomposition tree will serve a dual purpose. First, each vertex z ∈
D will serve as a “name” for a tree Sz ∈ S. Second, in the same way that the “messages passing”
in belief propagation the follows the topology of the input tree, the structure of our computations
follows the decomposition tree D. We now introduce our notations for computing and traversing
the decomposition tree. As the cover has trees with one or two boundary vertices (excepting T
which has none) we define the corresponding vertices of the decomposition tree, Ci := {z ∈ D :
|∂T (Sz)| = i} for i ∈ {1, 2}. In this section since we are concerned with the traversal of (D, r)
we abbreviate ↓D , ↑D as both ↓ , ↑ respectively as convenient. As ↓D(v) is a set of children, we
define the following functions to select specific children,)(v) := w if w ∈ ↓(v), ↑(v) ∈ ∂T (S(w))
for v ∈ D• ∩ (C1 ∪ C2) and *(v) := w if w ∈ ↓(v), w #=)(v) for w ∈ C2 and v ∈ D• ∩ C2.
When clear from the context we will use)v for)(v) as well as *v for *(v). We also need notation
for the potentially two boundary vertices of a tree Sv ∈ S if v ∈ D \ {r}. Observe that for
v ∈ C1∪C2 one boundary vertex of Sv is necessarily v̇ :=↑v and if v ∈ C2 there exists an ancestor
v̈ of v in D of so that {v̇, v̈} = ∂T (Sv). We also extend the split notation to pick out the specific

6

αa(v) := ψSv

T (v̇ → a), (v ∈ C1) γa(v) := dva
∏

w∈↓(v)∩C1

αa(w), (v∈V (T))

βab(v) := ψSv

T (v̇ → a, v̈ → b), (v ∈ C2) ρa(v) := dva
∏

R∈Ω(T,v)

ψR
T (v → a), (v∈V (T))

δ#
a(v) := dv̇a ψΩ(T,v̇,v)

T (v̇ → a), (v∈V (T)\{r}) δ$
a(v) :=dv̈a ψΩ(T,v̈,v)

T (v̈→ a), (v ∈ C2)

ε#
a(v) := ψΩ(T,v,v̇)

T (v → a), (v∈V (T)\{r}) ε$
a(v) := ψΩ(T,v,v̈)

T (v → a), (v ∈ C2)

Table 1: Weight definitions
complementary subtrees of T resulting from a split thus Ω(T, p, q) := Q ∈ Ω(T, p) if q ∈ Q and
define Ω(T, p, q) := ∪{R ∈ Ω(T, p) : q #∈ R}. Observe that T = Ω(T, p, q) ∪ Ω(T, p, q) and
{p} = Ω(T, p, q) ∩ Ω(T, p, q). We shall use the notation (v1 → a1, v2 → a2, . . . , vm → am) to
represent a labeling of {v1, v2, . . . , vm} that maps vi to ai. In Table 1 we now give the weights
used in our online marginalization algorithm. The αa, βab, γa weights are cached values maintained
by the algorithm and the weights ρa, δ$

a, δ%
a, ε$

a, and ε%
a are temporary values4 computed “on-the-

fly.” The indices a, b ∈ INk and thus the memory requirements of our algorithm are linear in the
cardinality of the tree and quadratic in the number of labels.

Identities for weights and potentials. For the following lemma we introduce the notion of the
extension of a labelling. We extend by a vertex v ∈ V (T) and a label a ∈ INk, the labelling
µ ∈ L(X) to the labelling µa

v ∈ L(X ∪ {v}) which satisfies µa
v(v) = a and µa

v(X) = µ.
Lemma 8. Given a tree, S ⊆ T , and a vertex v ∈ S then if v ∈ S \ ∂T (S)

ψS
T (µ)=

∑

a∈INk

dva

∏

R∈Ω(S,v)

ψR
T (µa

v(∂T (R))) else if v ∈ ∂T (S) then ψS
T (µ) =

∏

R∈Ω(S,v)

ψR
T (µ(∂T (R)))

Thus a direct consequence of Lemma 8 is that we can compute the marginal probability at v as
p(v → a|Θ,D) = ρa(v)∑

b∈INk
ρ

b
(v)

. The recursive application of such factorizations is the basis of our

algorithm (these factorizations are summarized in Table 2 in the technical appendices).

Algorithm initialization and complexity. In Figure 2 we give our algorithm for computing the
marginals at vertices with respect to (Θ,D). A number of our identities assumed for a given vertex
that it is in the interior of the tree and hence in the interior of decomposition tree. Thus before we
find the hierarchical cover of our input tree we extend the tree by adding a “dummy” edge from
each leaf of the tree to a new dummy vertex. These dummy edges play no role except to simplify
notation. The hierarchical cover is then found on this enlarged tree; the cover height may at most
only increase by one. By setting the values in dummy edges and vertices in Θ and D to one, this
ensures that all marginal computations are unchanged.

The running time of the algorithm is as follows. The computation of the hierarchical cover5 is linear
in |V (T)| as is the initialization step. The update and marginalization are linear in cover height
χ∗(T). The algorithm also scales quadratically in k on the marginalization step and cubically in k
on update as the merge of two C2 trees require the multiplication of two k × k matrices. Thus for
example if the set of possible labels is linear in the size of the tree classical belief propagation may
be faster.

Finally we observe that we may reduce the cubic dependence to a quadratic dependence on k via a
cover with the height bounded by the diameter of T as opposed to χ∗(T). This follows as the only
cubic step is in the update of a non-atomic (non-edge) β-potential. Thus if we can build a cover,
with only atomic β-potentials the running time will scale with k quadratically. We accomplish this
by modifying the cover algorithm (Figure 1) to only merge leaf vertices. Observe that the height of
this cover is now O(diameter(T)); and we have a hierarchical factorization into α-potentials and
only atomic β-potentials.

5 Multi-task learning in the allocation model with TREE-HEDGE
We conclude by sketching a simple online learning application to multi-task learning that is
amenable to our methods. The inspiration is that we have multiple tasks and a given tree struc-
ture that describes our prior expectation of “relatedness” between tasks (see e.g., [7, Sec. 3.1.3]).

4Note: if for γa(v) if the product is empty then the product evaluates to 1; and if v ∈ C1 then ε$
a(v) := 1.

5The construction of the decomposition tree may be simultaneously accomplished with the same complexity.

7

Marginalization (vertex v ∈ D•) :
1. w ← r
2. ρa(w) ← γa(r)
3. while(w &= v)
4. w ← ↑v(w)
5. if(w ∈ C1)
6. δ#

a(w) ← ρa(↑(w))/αa(w)
7. ε#

a(w) ←
∑

b βab(*(w))δ#
b (w)

8. ρa(w) = γa(w)ε#
a(w)

9. else
10. if(w = *(↑(w)))
11. δ#

a(w) ← ε$
a(↑(w))γa(↑(w))

12. δ$
a(w) ← δ#

a(↑(w))
13. else
14. δ#

a(w) ← ε#
a(↑(w))γa(↑(w))

15. δ$
a(w) ← δ$

a(↑(w))
16. ε#

a(w) ←
∑

b δ#
b (w)βab(*(w))

17. ε$
a(w) ←

∑
b δ$

b (w)βab(+(w))
18. ρa(w) ← ε#

a(w)ε$
a(w)γa(w)

19.
20. Output: ρa(v)/(

∑
b ρb(v))

Initialization: The α, β and γ weights are initialised in a
bottom-up fashion on the decomposition tree - we initialise
the weights of a vertex after we have initialised the weights
of all its children. Specifically, we first do a depth-first search
of D starting from r: When we reach an edge (v, w) ∈
E(T), if neither v or w is a leaf then we set βab((v, w)) ←
θ(v,w),a,b otherwise assuming w is a leaf we set αa(v) ← 1
(dummy edge). When we reach a vertex, v ∈ V (T), for
the last time (i.e. just before we backtrack from v) then
set: γa(v) ← dva

∏
w∈↓(v)∩C1

αa(w), and if v ∈ C2 then
βab(v) ←

∑
c βca(*(v))βcb(+(v))γc(v), or if v ∈ C1 then

αa(v) ←
∑

c βca(*(v))γc(v).

Update (vertex v ∈ D• ; data d ∈ [0,∞)k):
1. γa(v) ← γa(v) da

dva
; dv ← d; w ← v

2. while(w &= r)
3. if(w ∈ C1)
4. αold

a ← αa(w)
5. αa(w) ←

∑
c βca(*(w))γc(w)

6. γa(↑(w)) ← γa(↑(w))αa(w)/αold
a

7. else
8. βab(w) ←

∑
c βca(*(w))βcb(+(w))γc(w)

9. w ← ↑(w)

Figure 2: Algorithm: Initialization, Marginalization and Update

1. Parameters: A triple (T, Θ,D1) and η ∈ (0,∞).
2. For t = 1 to ! do
3. Receive: vt ∈ V (T)
4. Predict: p̂t = (p(vt → a|Θ,Dt))a∈INk

5. Receive: yt ∈ [0, 1]k

6. Incur loss: Lmix(y
t, p̂t)

7. Update: Dt+1 = Dt ; Dt+1(vt) = (p̂t(a)e−ηyt(a))a∈INk

Figure 3: TREE-HEDGE

Thus each vertex represents a task and if we have an edge between vertices then a priori we expect
those tasks to be related. Thus the hope is that information received for one task (vertex) will allow
us to improve our predictions on another task. For us each of these tasks is an allocation task as
addressed often with the HEDGE algorithm [4]. A similar application of the HEDGE algorithm in
multi-task learning was given in [8]. Their the authors considered a more challenging set-up where
the task structure is unknown and the hope is to do well if there is a posteriori a small clique of
closely related tasks. Our strong assumption of prior “tree-structured” knowledge allows us to ob-
tain a very efficient algorithm and sharp bounds which are not directly comparable to their results.
Finally, this set-up is also closely related to online graph labeling problem as in e.g., [9, 10, 11].

Thus the set-up is as follows. We incorporate our prior knowledge of task-relatedness with the triple
(T, Θ,D1). Then on a trial t, the algorithm is given a vt ∈ V (T), representing the task. The
algorithm then gives a non-negative prediction vector p̂t ∈ {p :

∑k
a=1 p(a) = 1} for task vt and

receives an outcome yt ∈ [0, 1]k. It then suffers a mixture loss Lmix(yt, p̂t) := yt · p̂t. The aim is
to predict to minimize this loss. We give the algorithm in Figure 3. The notation follows Section 4
and the method therein implies that on each trial we can predict and update in O(χ∗(T)) time. We
obtain the following theorem (a proof sketch is contained in appendix C of the long version).
Theorem 9. Given a tree T , a vertex sequence 〈v1, . . . , v"〉 and an outcome sequence 〈y1, . . . , y"〉
the loss of the TREE-HEDGE algorithm with the parameters (Θ,D1) and η > 0 is, for all labelings
µ ∈ INV (T)

k , bounded by
!∑

t=1

Lmix(y
t, p̂t) ≤ cη

(
!∑

t=1

yt(µ(vt)) +
ln 2
η

1
log2 p(µ|Θ,D1)

)
with cη :=

η
1− e−η

. (4)

Acknowledgements. We would like to thank David Barber, Guy Lever and Massimiliano Pontil for valuable
discussions. We, also, acknowledge the financial support of the PASCAL 2 European Network of Excellence.

8

References
[1] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] Frank R. Kschischang, Brenden J. Frey, and Hans Andrea Loeliger. Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.
[4] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[5] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. In
Proc. Natl. Conf. on AI, pages 133–136, 1982.

[6] Arthur L. Delcher, Adam J. Grove, Simon Kasif, and Judea Pearl. Logarithmic-time updates
and queries in probabilistic networks. J. Artif. Int. Res., 4:37–59, February 1996.

[7] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning multiple tasks
with kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

[8] Jacob Abernethy, Peter L. Bartlett, and Alexander Rakhlin. Multitask learning with expert
advice. In COLT, pages 484–498, 2007.

[9] Mark Herbster, Massimiliano Pontil, and Lisa Wainer. Online learning over graphs. In ICML,
pages 305–312. ACM, 2005.

[10] Mark Herbster, Guy Lever, and Massimiliano Pontil. Online prediction on large diameter
graphs. In NIPS, pages 649–656. MIT Press, 2008.

[11] Nicolò Cesa-Bianchi, Claudio Gentile, and Fabio Vitale. Fast and optimal prediction on a
labeled tree. In COLT, 2009.

9

