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Abstract

We propose a high dimensional semiparametric scale-invariant principle compo-
nent analysis, named TCA, by utilize the natural connection between the ellipti-
cal distribution family and the principal component analysis. Elliptical distribu-
tion family includes many well-known multivariate distributions like multivari-
ate Gaussian, t and logistic and it is extended to the meta-elliptical by Fang et.al
(2002) using the copula techniques. In this paper we extend the meta-elliptical
distribution family to a even larger family, called transelliptical. We prove that
TCA can obtain a near-optimal s

√
log d/n estimation consistency rate in recover-

ing the leading eigenvector of the latent generalized correlation matrix under the
transelliptical distribution family, even if the distributions are very heavy-tailed,
have infinite second moments, do not have densities and possess arbitrarily con-
tinuous marginal distributions. A feature selection result with explicit rate is also
provided. TCA is further implemented in both numerical simulations and large-
scale stock data to illustrate its empirical usefulness. Both theories and experi-
ments confirm that TCA can achieve model flexibility, estimation accuracy and
robustness at almost no cost.

1 Introduction
Given x1, . . . , xn ∈ Rd as n i.i.d realizations of a random vector X ∈ Rd with population co-
variance matrix Σ and correlation matrix Σ0, the Principal Component Analysis (PCA) aims at
recovering the top m leading eigenvectors u1, . . . , um of Σ. In practice, Σ is unknown and the top
m leading eigenvectors û1, . . . , ûm of the Pearson sample covariance matrix are obtained as the
estimators. However, because the PCA is well-known to be scale-variant, meaning that changing
the measurement scale of variables will make the estimators different, the PCA conducted on the
sample correlation matrix is also regular in literatures [2]. It aims at recovering the top m lead-
ing eigenvectors θ1, . . . , θm of Σ0 using the top m leading eigenvectors θ̂1, . . . , θ̂m of the Pearson
sample correlation matrix. Because Σ0 is scale-invariant, we call the PCA aiming at recovering the
eigenvectors of Σ0 the scale-invariant PCA.

In high dimensional settings, when d scales with n, it has been discussed in [14] that û1 and θ̂1

are generally not consistent estimators of u1 and θ1. For any two vectors v1, v2 ∈ Rd, denote the
angle between v1 and v2 by ∠(v1, v2). [14] proved that ∠(u1, û1) and ∠(θ1, θ̂1) do not converge
to zero. Therefore, it is commonly assumed that θ1 = (θ11, . . . , θ1d)T is sparse, meaning that
card(supp(θ1)) := card({θ1j : θ1j 6= 0}) = s < n. This results in a variety of sparse PCA
procedures. Here we note that supp(uj) = supp(θj), for j = 1, . . . , d.

The elliptical distributions are of special interest in Principal Component Analysis. The study of
elliptical distributions and their extensions have been launched in statistics recently by [4]. The
elliptical distributions can be characterized by their stochastic representations [5]. A random vector
Z = (Z1, . . . , Zd)T is said to follow an elliptical distribution or be elliptically distributed with
parameters µ, Σ � 0, and rank(Σ) = q, if it admits the stochastic representation: Z = µ + ξAU ,
where µ ∈ Rd, ξ ∈ R and U ∈ Rq are independent random variables, ξ ≥ 0, U is uniformly
distributed on the unit sphere in Rq, and A ∈ Rd×q is a fixed matrix such that AAT = Σ. We call
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ξ the generating variable. The density of Z does not necessarily exist. Elliptical distribution family
includes a variety of famous multivariate distributions: multivariate Gaussian, multivariate Cauchy,
Student’s t, logistic, Kotz, symmetric Pearson type-II and type-VII distributions. We refer to [3, 5]
and [4] for more details.

[4] introduce the term meta-elliptical distribution in extending the continuous elliptical distributions
whose densities exist to a wider class of distributions with densities existing. The construction of
the meta-elliptical distributions is based on the copula technique and it was initially introduced by
[25]. In particular, when the latent elliptical distribution is the multivariate Gaussian, we have the
meta-Gaussian or the nonparanormal distributions introduced by [16] and [19].

The elliptical distribution is of special interest in Principal Component Analysis (PCA). It has been
shown in a variety of literatures [27, 11, 22, 12, 24] that the PCA conducted on elliptical distributions
shares a number of good properties enjoyed by the PCA conducted on the Gaussian distribution. In
particular, [11] show that with regard to a range of hypothesis relevant to PCA, tests based on a mul-
tivariate Gaussian assumption have the identical power for all elliptical distributions even without
second moments. We will utilize this connection to construct a new model in this paper.

In this paper, a new high dimensional scale-invariant principle component analysis approach is pro-
posed, named Transelliptical Component Analysis (TCA). Firstly, to achieve both the estimation
accuracy and model flexibility, we build the model of TCA on the transelliptical distributions. A
random vector X = (X1, . . . , Xd)T is said to follow a transelliptical distribution if there exists a set
of univariate strictly monotone functions f = {fj}d

j=1 such that f(X) := (f1(X1), . . . , fd(Xd))T

follows a continuous elliptical distribution with parameters µ = 0 and Σ0 = [Σ0
jk] � 0. Here

diag(Σ0) = 1. Transelliptical distributions do not necessarily possess densities and are strict exten-
sions to the meta-elliptical distributions defined in [4]. TCA aims at recovering the top m leading
eigenvectors θ1, . . . , θm of Σ0.

Secondly, to estimate Σ0 robustly and efficiently, instead of estimating the transformation functions
{f̂j}d

j=1 of {fj}d
j=1 as [19] did, realizing that {fj}d

j=1 preserve the ranks of the data, we utilize the
nonparametric rank-based correlation coefficient estimator, Kendall’s tau, to estimate Σ0. We prove
that even though the generating variable ξ is changing and marginal distributions are arbitrarily
continuous, Kendall’s tau correlation matrix approximates Σ0 in a parametric rate OP (

√
log d/n).

This key observation makes Kendall’s tau a better estimator than Pearson sample correlation matrix
with regard to a much larger distribution family than the Gaussian.

Thirdly, in terms of methodology and theory, we analyze the general case that X follows a
transelliptical distribution and θ1 is sparse. Here θ1 is the leading eigenvector of Σ0. We ob-
tain the TCA estimator θ̃∗1 of θ1 utilizing the Kendall’s tau correlation matrix. We prove that
the TCA can obtain a fast convergence rate in terms of parameter estimation and is of the rate
sin∠(θ1, θ̃∞) = OP (s

√
log d/n), where θ̃∞ is the estimator TCA obtains. A feature selection

consistency result with explicit rate is also provided.

2 Background
We start with notations: Let M = [Mjk] ∈ Rd×d and v = (v1, ..., vd)T ∈ Rd. Let v’s subvector
with entries indexed by I be denoted by vI , M ’s submatrix with rows indexed by I and columns
indexed by J be denoted by MIJ . Let MI· and M·J be the submatrix of M with rows in I and all
columns, and the submatrix of M with columns in J and all rows. For 0 < q < ∞, we define the
`0, `q and `∞ vector norm as

‖v‖0 := card(supp(v)), ‖v‖q := (
d∑

i=1

|vi|q)1/q and ‖v‖∞ := max
1≤i≤d

|vi|.

We define the matrix `max norm as the elementwise maximum value: ‖M‖max := max{|Mij |} and
the `∞ norm as ‖M‖∞ := max1≤i≤m

∑n
j=1 |Mij |. Let Λj(M) be the toppest j−th eigenvalue

of M. In special, Λmin(M) := Λd(M) and Λmax(M) := Λ1(M) are the smallest and largest
eigenvalues of M . The vectorized matrix of M , denoted by vec(M), is defined as: vec(M) :=
(MT

·1 , . . . ,MT
·d)T . Let Sd−1 := {v ∈ Rd : ‖v‖2 = 1} be the d-dimensional unit sphere. The

sign =d denotes that the two sides of the equality have the same distributions. For any two vectors
a, b ∈ Rd and any two squared matrices A,B ∈ Rd×d, denote the inner product of a and b, A and
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B by
〈a, b〉 := aT b and 〈A,B〉 := Tr(AT B).

2.1 Elliptical and Transelliptical Distributions

This section is devoted to a brief discussion of elliptical and transelliptical distributions. In the
sequel, to be clear, a random vector X = (X1, . . . , Xd)T is said to be continuous if the marginal
distribution functions are all continuous.

2.1.1 Elliptical Distributions
In this section we shall firstly provide a definition of the elliptical distributions following [5].
Definition 2.1. Given µ ∈ Rd and Σ ∈ Rd×d, where rank(Σ) = q ≤ d, a random vector Z =
(Z1, . . . , Zd)T is said to have an elliptical distribution or is elliptically distributed with parameters µ
and Σ, if and only if Z has a stochastic representation: Z =d µ + ξAU , where µ ∈ Rd, A ∈ Rd×q,
AAT = Σ, ξ ≥ 0 is a random variable independent of U , U ∈ Sq−1 is uniformly distributed in the
unit sphere in Rq. In this setting we denote by Z ∼ ECd(µ,Σ, ξ).

A random variable in R with continuous marginal distribution function does not necessarily possess
density. A well-known set of examples is the cantor distribution, whose support set is the cantor set.
We refer to [7] for more discussions on this phenomenon. Σ is symmetric and positive semi-definite,
but not necessarily to be positive definite.
Proposition 2.1. A random vector Z = (Z1, . . . , Zd)T has the stochastic representation Z ∼
ECd(µ,Σ, ξ), if and only if Z has the characteristic function exp(it′µ)φ(t′Σt), where φ is a
properly-defined characteristic function. We denote by X ∼ ECd(µ,Σ, φ). If ξ is absolutely
continuous and Σ is non-singular, then the density of Z exists and is of the form: pZ(z) =
|Σ|−1/2g

(
(z − µ)T Σ−1(z − µ)

)
, where g : [0,∞) → [0,∞). We denote by Z ∼ ECd(µ,Σ, g).

A proof can be found in page 42 of [5]. When the density exists, ξ, φ and g are uniquely determined
by one of the other. The relationship among ξ, φ and g are described in Theorem 2.2 and Theorem
2.9 of [5]. The next proposition states that Σ, φ, ξ and A are not unique.
Proposition 2.2 (Theorem 2.15 of [5]). (i) If Z = µ + ξAU and Z = µ∗ + ξ∗A∗U∗, where
A ∈ Rd×q and A∗ ∈ Rd×q, Z is continuous, then there exists a constant c > 0 such that
µ∗ = µ, A∗A∗T = cAAT , ξ∗ = c−1/2ξ. (ii) If Z ∼ ECd(µ,Σ, φ) and Z ∼ ECd(µ∗,Σ∗, φ∗),
Z is continuous, then there exists a constant c > 0 such that µ∗ = µ, Σ∗ = cΣ, φ∗(·) = φ(c−1·).
The next proposition discusses the cases where (µ,Σ, ξ) is identifiable for Z.
Proposition 2.3. If Z ∼ ECd(µ,Σ, ξ) is continuous with rank(Σ) = q, then (1) P(ξ = 0) = 0;
(2)Σii > 0 for i ∈ {1, . . . , d}; (3)(µ, Σ, ξ) is identifiable for Z under the constraint that
max(diag(Σ)) = 1.
We define Σ0 = [Σ0

jk] with Σ0
jk = Σjk/

√
ΣjjΣkk to be the generalized correlation matrix of Z. Σ0

is the correlation matrix of Z when Z’s second moment exists and still reflects the rank dependency
even when Z has infinite second moment [13].

2.1.2 Transelliptical Distributions

To extend the elliptical distribution, we firstly define two sets of symmetric matrices: R+
d = {Σ ∈

Rd×d : ΣT = Σ,diag(Σ) = 1,Σ � 0};Rd = {Σ ∈ Rd×d : ΣT = Σ,diag(Σ) = 1,Σ � 0}.
Definition 2.2. A random vector X = (X1, . . . , Xd)T with continuous marginal distribution func-
tions F1, . . . , Fd and density existing is said to follow a meta-elliptical distribution if and only if
there exists a continuous elliptically distributed random vector Z ∼ ECd(0,Σ0, g) with the marginal
distribution function Qg and Σ0 ∈ R+

d , such that (Q−1
g (F1(X1)), . . . , Q−1

g (Fd(Xd)))T =d Z.

In this paper, we generalize the meta-elliptical distribution family to a broader class, named the
transelliptical. The transelliptical distributions do not assume that densities exist for both X and Z
and are therefore strict extensions to meta-elliptical distributions.
Definition 2.3. A random vector X = (X1, . . . , Xd)T is said to follow a transelliptical distribu-
tion if and only if there exists a set of strictly monotone functions f = {fj}d

j=1 and a latent
continuous elliptically distributed random vector Z ∼ ECd(0,Σ0, ξ) with Σ0 ∈ Rd, such that
(f1(X1), . . . , fd(Xd))T =d Z. We call such X ∼ TEd(Σ0, ξ; f1, . . . , fd) and Σ0 the latent gener-
alized correlation matrix.
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Proposition 2.4. If X follows a meta-elliptical distribution, in other words, X possesses den-
sity and has continuous marginal distributions F1, . . . , Fd of X and a continuous random vec-
tor Z ∼ ECd(0,Σ0, g) such that (Q−1

g (F1(X1)), . . . , Q−1
g (Fd(Xd)))T =d Z, then we have

X ∼ TEd(Σ0, ξ;Q−1
g (F1), . . . , Q−1

g (Fd)).

To be more clear, the transelliptical distribution family is strictly larger than the meta-elliptical
distribution family in three senses: (i) the generating variable ξ of the latent elliptical distribution is
not necessarily absolute continuous in transelliptical distributions; (ii) the parameter Σ0 is strictly
enlarged from R+

d to Rd; (iii) the marginal distributions of X do not necessarily possess densities.

The term meta-Gaussian (or the nonparanormal) is introduced by [16, 19]. The term meta-elliptical
copula is introduced in [6]. This is actually an alternative definition of the meta-elliptical distribu-
tion. The term elliptical copula is introduced in [18]. In summary,

transelliptical ⊃ meta-elliptical = meta-elliptical copula ⊃ elliptical* ⊃ elliptical copula,

transelliptical ⊃ meta-Gaussian = nonparanormal.

Here elliptical* represents the elliptical distributions which are continuous and possess densities.

2.2 Latent Correlation Matrix Estimation for Transelliptical Distributions

We firstly study the correlation and covariance matrices of elliptical distributions. Given Z ∼
ECd(µ,Σ, ξ), we first explore the relationship between the moments of Z and µ and Σ.
Proposition 2.5. Given Z ∼ ECd(µ, Σ, ξ) with rank(Σ) = q and finite second moments and Σ0 the
generalized correlation matrix of Z, we have E(Z) = µ, Var(Z) = E(ξ2)

q Σ, and Cor(Z) = Σ0.

When the random vector is elliptically distributed with second moment finite, the sample mean and
correlation matrices are element-wise consistent estimators of µ and Σ0. However, the elliptical
distributions are generally very heavy-tailed (multivariate t or Cauchy distributions for example),
making Pearson sample correlation matrix a bad estimator. When the distribution family is extended
to the transelliptical, the Pearson sample correlation matrix is generally no longer a element-wise
consistent estimator of Σ0. A similar “plug-in” idea as [6] works when ξ is known. In the general
case when ξ is unknown, the “plug-in” idea itself is unavailable.

3 The TCA
In this section we propose the TCA approach. TCA is a two-stage method in estimating the leading
eigenvectors of Σ0. Firstly, we estimate the Kendall’s tau correlation matrix R̂. Secondly, we plug
R̂ into a sparse PCA algorithm.

3.1 Rank-based Measures of Associations

The main idea of the TCA is to exploit the Kendall’s tau statistic to estimate the generalized cor-
relation matrix Σ0 efficiently and robustly. In detail, let X = (X1, . . . , Xd)T be a d−dimensional
random vector with marginal distributions F1, . . . , Fd and the joint distributions Fjk for the pair
(Xj , Xk). The population Spearman’s rho and Kendall’s tau correlation coefficients are given by

ρ(Xj , Xk) = Corr(Fj(Xj),Fk(Xk)),

τ(Xj , Xk) = P((Xj − X̃j)(Xk − X̃k) > 0)− P((Xj − X̃j)(Xk − X̃k) < 0),

where (X̃j , X̃k) is a independent copy of (Xj , Xk). In particular, for Kendall’s tau, we have
the following theorem, which states an explicit relationship between τjk and Σ0

jk given X ∼
TEd(Σ0, ξ; f1, . . . , fd), no matter what the generating variable ξ is. This is a strict extension to
[4]’s result on the meta-elliptical distribution family.
Theorem 3.1. Given X ∼ TEd(Σ0, ξ; f1, . . . , fd) transelliptically distributed, we have

Σ0
jk = sin

(π

2
τ(Xj , Xk)

)
. (3.1)

Remark 3.1. Although the conclusion in Theorem 3.1 of [4] is correct, the proof provided is wrong
or at least very ambiguous. Theorem 2.22 in [5] builds the result only for one sample statistic and
cannot be generalized to the statistic of multiple samples, like the Kendall’s tau or Spearman’s rho.
Therefore, we provide a new and clear version here. Detailed proofs can be found in the long version
of this paper [8].
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Spearman’s rho depends not only on Σ but also on the generating variable ξ. When X follows mul-
tivariate Gaussian, [17] proves that: ρ(Xj , Xk) = 6

π arcsin(Σ0
jk/2). On the other hand, when X ∼

TEd(Σ0, ξ; f1, . . . , fd) with ξ =d 1, [10] proves that: ρ(Xj , Xk) = 3( arcsin Σ0
jk

π )− 4( arcsin Σ0
jk

π )3.

In estimating τ(Xj , Xk), let x1, . . . , xn be n independent realizations of X , where xi =
(xi1, . . . , xid)T . We consider the following rank-based statistic:

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign (xij − xi′j) (xik − xi′k) , if j 6= k

τ̂jk = 1, if j = k.

(3.2)

to approximate τ(Xj , Xk) and measure the association between Xj and Xk. We define the Kendall’s
tau correlation matrix R̂ = [R̂jk] such that R̂jk = sin

(
π
2 τ̂jk

)
.

3.2 Methods

The elliptical distribution is of special interest in Principal Component Analysis (PCA). It has been
shown in a variety of literatures [27, 11, 22, 12, 24] that the PCA conducted on elliptical distributions
share a number of good properties enjoyed by the PCA conducted on the Gaussian distribution. We
will utilize this connection to construct a new model in this paper.

3.2.1 TCA Model
Utilizing the natural relationship between elliptical distributions and the PCA, we propose the model
of Transelliptical Component Analysis (TCA). Here ideas of transelliptical distribution family and
scale-invariant PCA are exploited. We wish to estimate the leading eigenvector of the latent gener-
alized correlation matrix. In particular, the following model Md(Σ0, ξ, s; f) with f = {fj}d

j=1 is
considered:

Md(Σ0, ξ, s; f) :
{

X ∼ TEd(Σ0, ξ; f1, . . . , fd),
‖θ1‖0 = s,

(3.3)

where θ1 is the leading eigenvectors of the latent generalized correlation matrix Σ0 we are interested
in estimating. By spectral decomposition, we write: Σ0 =

∑d
j=1 λdθdθ

T
d , where λ1 ≥ λ2 ≥

. . . ≥ λd ≥ 0 and λ1 > 0 to make Σ0 non-degenerate. θ1, . . . , θd ∈ Sd−1 are the corresponding
eigenvectors of λ1, . . . , λd. Inspired by the model Md(Σ0, ξ, s; f), it is natural to consider the
following optimization problem:

θ̃∗1 = arg max
v∈Rd

vT R̂v,

subject to v ∈ Sd−1 ∩ B0(s), (3.4)

where B0(s) := {v ∈ Rd : ‖v‖0 ≤ s} and R̂ is the estimated Kendall’s tau correlation matrix. The
corresponding global optimum is denoted by θ̃∗1 .

3.2.2 TCA Algorithm

Generally we can plug in the Kendall’s tau correlation matrix R̂ to any sparse PCA algorithm listed
above. In this paper, to approximate θ1, we consider using the Truncated Power method (TPower)
proposed by [28] and [20]. The main idea of the TPower is to utilize the power method, but truncate
the vector to a `0 ball with radius k in each iteration. Detailed algorithms are provided in the long
version of this paper [8]. The final estimator is denoted by θ̃∞ with ‖θ̃∞‖0 = k. It will be shown
in Section 4 and Section 5 that the Kendall’s tau correlation matrix is a better statistic in estimating
the correlation matrix than the Pearson sample correlation matrix in the sense that (i) it enjoys the
Gaussian parametric rate in a much larger distribution family, including many distributions with
heavy tails; (ii) it is a more robust estimator, i.e. resistant to outliers.

We use the iterative deflation method to learn the first k instead of the first one leading eigenvectors,
following the discussions of [21, 15, 28, 29]. In detail, a matrix Γ̂ ∈ Rd×s deflates a vector v ∈ Rd

and achieves a new matrix Γ̂′: Γ̂′ := (I − vvT )Γ̂(I − vvT ). In this way, Γ̂′ is orthogonal to v.
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4 Theoretical Properties

In this section the theoretical properties of the TCA estimators are provided. Especially, we are
interested in the high dimensional case when d > n.

4.1 Rank-based Correlation Matrix Estimation

This section is devoted to the concentration result of the Kendall sample correlation matrix R̂ to the
Pearson correlation matrix Σ0. The `max convergence rate of R̂ is provided in the next theorem.
Theorem 4.1. Given x1, . . . , xn n independent realizations of X ∼ TEd(Σ0, ξ; f1, . . . , fd) and
letting R̂ be the Kendall tau correlation matrix, we have with probability at least 1− d−5/2,

‖R̂− Σ0‖max ≤ 3π
√

log d/n. (4.1)

Proof sketch. Theorem 4.1 can be proved by realizing that τ̂jk is an unbiased estimator of τ(Xj , Xk)
and is a U-statistic with size 2. Hoeffding’s inequality for U-statistic can then be applied to obtain
the result. Detailed proofs can be found in the long version of this paper [8].

4.2 TCA Estimators

This section is devoted to the statement of our main result on the upper bound of the estimated error
of the TCA global optimum θ̃∗1 and TPower solver θ̃∞. We assume that the Model Md(Σ0, ξ, s; f)
holds and the next theorem provides an upper bound on the angle between the estimated leading
eigenvector θ̃∗1 and true leading eigenvector θ1.

Theorem 4.2. Let θ̃∗1 be the global solution to Equation (3.4) and the ModelMd(Σ0, ξ, s; f) holds.
For any two vectors v1 ∈ Sd−1 and v2 ∈ Sd−1, letting

| sin∠(v1, v2)| =
√

1− (vT
1 v2)2,

then we have

P

(
| sin∠(θ̃∗1 , θ1)| ≤

6π

λ1 − λ2
· s
√

log d

n

)
≥ 1− d−5/2. (4.2)

Proof sketch. The key idea of the proof is to utilize the `max norm convergence result of R̂ to Σ0.
Detailed proofs can be found in the long version of this paper [8].

Generally, when s and λ1, λ2 do not scale with (n, d), the rate is OP (
√

log d/n), which is the
parametric rate [20, 26, 23] obtains. When (n, d) goes to infinity, the two leading eigenvalues λ1

and λ2 will typically go to infinity and will at least be away from zero. Hence, our rate shown in

Theorem 4.2 will be usually better than the seemingly more common rate: 6πλ1
λ1−λ2

· s
√

log d
n .

Corollary 4.1 (Feature Selection Consistency of the TCA). Let θ̃∗1 be the global solution to
Equation (3.4) and the Model Md(Σ0, ξ, s; f) holds. Let

Θ := supp(θ1) and Θ̂∗ := supp(θ̃∗1).

If we further have

min
j∈Θ

|θ1j | ≥
6
√

2π

λ1 − λ2
· s
√

log d

n
,

then we have, P(Θ̂∗ = Θ) ≥ 1− d−5/2.

Proof sketch. The key of the proof is to construct a contradiction given Theorem 4.2 and the condi-
tion on the minimum value of |θ1|. Detailed proofs can be found in the long version of this paper
[8].
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5 Experiments

In this section we investigate the empirical performance of the TCA method. We utilize the TPower
algorithm proposed by [28] and the following three methods are considered: (1) Pearson: the
classic high dimensional scale-invariant PCA using the Pearson sample correlation matrix of the
data; (2) Kendall: the TCA using the Kendall correlation matrix; (3) LatPearson: the classic high
dimensional scale-invariant PCA using the Pearson sample correlation matrix of the data drawn from
the latent elliptical distribution (perfect without data contamination).

5.1 Numerical Simulations

In the simulation study we randomly sample n data points from a certain transelliptical distribution
TEd(Σ0, ξ; f1, . . . , fd). Here we consider the set up of d = 100. To determine the transelliptical
distribution, firstly, we derive Σ0 in the following way: A covariance matrix Σ is firstly synthesized
through the eigenvalue decomposition, where the first two eigenvalues are given and the correspond-
ing eigenvectors are pre-specified to be sparse. In detail, let Σ =

∑d
j=1 ωjuju

T
j , where ω1 =

6, ω2 = 3, ω3 = . . . = ωd = 1, and the first two leading eigenvectors of Σ, u1 and u2, are sparse
with the first s = 10 entries of u1 and the second s = 10 entries of u2 are nonzero, i.e.

u1j =
{

1√
10

1 ≤ j ≤ 10
0 otherwise

and u2j =
{

1√
10

11 ≤ j ≤ 20
0 otherwise

. (5.1)

The remaining eigenvectors are chosen arbitrarily. The generalized correlation matrix Σ0 is gener-
ated from Σ, with λ1 = 4, λ2 = 2.5, λ3, . . . , λd ≤ 1 and the top two leading eigenvectors sparse:

θ1j =
{
− 1√

10
1 ≤ j ≤ 10

0 otherwise
and θ2j =

{
− 1√

10
11 ≤ j ≤ 20

0 otherwise
. (5.2)

Secondly, using Σ0, we consider the following three generating schemes:

[Scheme 1] X ∼ TEd(Σ0, ξ; f1, . . . , fd) with ξ ∼ χd and f1(x) = . . . = fd(x) = x. Here√
Y 2

1 + . . . + Y 2
d ∼ χd with Y1, . . . , Yd ∼i.i.d N(0, 1). In other words, χd is the chi-distribution

with degree of freedom d. This is equivalent to say that X ∼ N(0,Σ0) (Example 2.4 of [5]).

[Scheme 2] X ∼ TEd(Σ0, ξ; f1, . . . , fd) with ξ =d
√

mξ∗1/ξ∗2 and f1(x) = . . . = fd(x) = x.
Here ξ∗1 ∼ χd, ξ∗2 ∼ χm, ξ∗1 is independent of ξ∗2 and m ∈ N. This is equivalent to say that
X ∼ Mtd(m,0,Σ0), i.e. X following a multivariate-t distribution with degree of freedom m, mean
0 and covariance matrix Σ0 (Example 2.5 of [5]). Here we consider m = 3.

[Scheme 3] X ∼ TEd(Σ0, ξ; f1, . . . , fd) with ξ =d
√

mξ∗1/ξ∗2 . Here ξ∗1 ∼ χd, ξ∗2 ∼ χm, ξ∗1 is in-
dependent of ξ∗2 and m = 3. Moreover, {f1, . . . , fd} = {h1, h2, h3, h4, h5, h1, h2, h3, h4, h5, . . .},
where

h−1
1 (x) := x, h−1

2 (x) :=
sign(x)|x|1/2√∫

|t|φ(t)dt
, h−1

3 (x) :=
Φ(x)−

∫
Φ(t)φ(t)dt√∫ (

Φ(y)−
∫

Φ(t)φ(t)dt
)2

φ(y)dy
,

h−1
4 (x) :=

x3√∫
t6φ(t)dt

, h−1
5 (x) :=

exp(x)−
∫

exp(t)φ(t)dt√∫ (
exp(y)−

∫
exp(t)φ(t)dt

)2
φ(y)dy

.

This is equivalent to say that X is transelliptically distributed with the latent elliptical distribution
Z ∼ Mtd(3,0,Σ0).

To evaluate the robustness of different methods, let r ∈ [0, 1) represent the proportion of samples
being contaminated. For each dimension, we randomly select bnrc entries and replace them with
either 5 or -5 with equal probability. The final data matrix we obtained is X ∈ Rn×d. Here we
pick r = 0, 0.02 or 0.05. Under the Scheme 1 to Scheme 3 with different levels of contamination
(r = 0, 0.02 or 0.05), we repeatedly generate the data matrix X for 1,000 times and compute
the averaged False Positive Rates and False Negative Rates using a path of tuning parameters k
from 5 to 90. The feature selection performances of different methods are then evaluated by plotting
(FPR(k), 1−FNR(k)). The corresponding ROC curves are presented in Figure 1 (A). More results
are shown in the long version of this paper [8]. It can be observed that Kendall is generally better
and more resistance to the outliers compared with Pearson.
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Figure 1: (A) ROC curves under Scheme 1, Scheme 2 and Scheme 3 (top, middle, bottom) and data
contamination at different levels (r = 0, 0.02, 0.05 from left to right). x−axis is FPR and y−axis
is TPR. Here n = 100 and d = 100. (B) Successful matches of the market trend proportions only
using the stocks in Ak and Bk. The x−axis represents the tuning parameter k scaling from 1 to 200;
the y−axis represents the % of successful matches. The curve denoted by ’Kendall’ represents the
points of (k, ρAk

) and the curves denoted by ’Pearson’ represents the points of (k, ρBk
).

5.2 Equities Data
In this section we apply the TCA on the stock price data from Yahoo! Finance (finance.yahoo.
com). We collected the daily closing prices for J=452 stocks that were consistently in the S&P 500
index between January 1, 2003 through January 1, 2008. This gave us altogether T=1,257 data
points, each data point corresponds to the vector of closing prices on a trading day. Let St = [Stt,j ]
denote by the closing price of stock j on day t.

We wish to evaluate the ability of using the only k stocks to represent the trend of the whole stock
market. To this end, we run Kendall and Pearson on St and obtain the leading eigenvectors
θ̃Kendall and θ̃Pearson using the tuning parameter k ∈ N. Let Ak := supp(θ̃Kendall) and Bk :=
supp(θ̃Pearson). And then we let TW

t , TAk
t and TBk

t denote by the trend of the whole stocks, Ak

stocks and Bk stocks in tth day compared with t− 1th date, i.e:

TW
t := I(

∑
j

Stt,j −
∑

j

Stt−1,j >), TAk
t := I(

∑
j∈Ak

Stt,j −
∑

j∈Ak

Stt−1,j > 0)

and
TBk

t := I(
∑

j∈Bk

Stt,j −
∑

j∈Bk

Stt−1,j > 0),

here I is the indicator function. In this way, we can calculate the proportion of successful matches
of the market trend using the stocks in Ak and Bk as: ρAk

:= 1
T

∑
t I(TW

t = TAk
t ) and ρBk

:=
1
T

∑
t I(TW

t = TBk
t ). We visualize the result by plotting (k, ρAk

) and (k, ρBk
) on a 2D figure. The

result is presented in Figure 1 (B).

It can be observed from Figure 1 (B) that Kendall summarizes the trend of the whole stock market
constantly better than Pearson. Moreover, the averaged difference between the two methods are
1

200

∑
k(ρAk

− ρBk
) = 1.4025 with the standard deviation 0.6743. Therefore, the difference is

significant.
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