
Supplementary Documents for “Semi-Crowdsource
Clustering: Generalizing Crowd Labeling by Robust

Distance Metric Learning”

Jinfeng Yi†, Rong Jin†, Anil K. Jain†, Shaili Jain\, Tianbao Yang‡
†Michigan State University, East Lansing, MI 48824, USA

\Yale University, New Haven, CT 06520, USA
‡Machine Learning Lab, GE Global Research, San Ramon, CA 94583, USA
{yijinfen, rongjin, jain}@cse.msu.edu, shaili.jain@yale.edu, tyang@ge.com

1 Theoretical Analysis for Perfect Recovery using Equation (2)

The following discussion about the perfect recovery result using Eq. (2) comes from [3]. We repeat
it in the supplementary document for the completeness of this study.

To discuss the perfect recovery result for using Eq. (2), we first need to make a few assumptions
about A∗ besides its low rank. Let A∗ be a low-rank matrix of rank r, with a singular value decomp-
sition A∗ = UΣV >, where U = (u1, . . . ,ur) ∈ RN×r and V = (v1, . . . ,vr) ∈ RN×r are the left
and right eigenvectors of A∗, satisfying the following incoherence assumptions.

• A1 The row and column spaces of A∗ have coherence bounded above by some positive
number µ0, i.e.,

max
i∈[N ]

‖PU (ei)‖22 ≤
µ0r

N
, max

i∈[N ]
‖PV (ei)‖22 ≤

µ0r

N

where ei is the standard basis vector.

• A2 The matrix E = UV > has a maximum entry bounded by
µ1
√
r

N
in absolute value for

some positive µ1, i.e. |Ei,j | ≤
µ1
√
r

N
,∀(i, j) ∈ [N ]× [N ],

where PU and PV denote the orthogonal projections on the column space and row space of A∗,
respectively, i.e.

PU = UU>, PV = V V >

To state our theorem, we need to introduce a few notations. Let ξ(A′) and µ(A′) denote the low-rank
and sparsity incoherence of matrix A′ defined by [1], i.e.

ξ(A′) = max
E∈T (A′),‖E‖≤1

‖E‖∞ (1)

µ(A′) = max
E∈Ω(A′),‖E‖∞≤1

‖E‖ (2)

where T (A′) denotes the space spanned by the elements of the form uky
> and xv>k , for 1 ≤ k ≤ r,

Ω(A′) denotes the space of matrices that have the same support toA′, ‖ ·‖ denotes the spectral norm
and ‖ · ‖∞ denotes the largest entry in magnitude.

Lemma 1. Let A∗ ∈ RN×N be a similarity matrix of rank r obeying the incoherence properties
(A1) and (A2), with µ = max(µ0, µ1). Suppose we observe m1 entries of A∗ recorded in Ã
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with locations sampled uniformly at random, denoted by S. Under the assumption that m0 entries
randomly sampled from m1 observed entries are corrupted, denoted by Ω, i.e. A∗ij 6= Ãij , (i, j) ∈
Ω. Given PS(Ã) = PS(A∗ + E∗), where E∗ corresponds to the corrupted entries in Ω. With

µ(E∗)ξ(A∗) ≤ 1

4r + 5
, m1 −m0 ≥ C1µ

4n(log n)2,

and C1 is a constant, we have, with a probability at least 1−N−3, the solution (A′, E) = (A∗, E∗)
is the unique optimizer to (2) provided that

ξ(A∗)− (2r − 1)ξ2(A∗)µ(E∗)

1− 2(r + 1)ξ(A∗)µ(E∗)
< λ <

1− (4r + 5)ξ(A∗)µ(E∗)

(r + 2)µ(E∗)

2 Proof of Theorem 1

To prove Theorem 1, we need the following theorem for matrix concentration.

Lemma 2. (Lemma 2 from [2]) Let H be a Hilbert space and ξ be a random variable on (Z, ρ)
with values in H. Assume ‖ξ‖ ≤ M <∞ almost surely. Denote σ2(ξ) = E(‖ξ‖2). Let {zi}mi=1 be
independent random drawers of ρ. For any 0 < δ < 1, with confidence 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

(ξi − E[ξi])

∥∥∥∥∥ ≤ 4M ln(2/δ)√
m

Using the assumption that |x|2 ≤ 1 and Lemma 2, we have, with a probability 1− n−3,∣∣∣∣ 1

m
X̂X̂> − CX

∣∣∣∣
2

≤ 12 lnn√
n

and therefore ∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

− (CX + λI)−1

∣∣∣∣∣
2

≤ 12 lnn

λ
√
n

Second, according to Lemma 1, with a probability 1 − n−3, we have Â = Y Y > and therefore
X̂ÂX̂> = X̂Y Y >X̂>. Again, using the matrix concentration theory, we have, with a probability
1− n−3, ∣∣∣∣ 1

m
X̂Y −B

∣∣∣∣
2

≤ 12 lnn√
n

Finally, we rewrite |Ms − M̂s|2 as

‖Ms − M̂s‖2

≤

∣∣∣∣∣Ms −
(

1

m
X̂X̂> + λI

)−1

BB>CX

∣∣∣∣∣
2

+∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

BB>CX −
(

1

m
X̂X̂> + λI

)
BB>

(
1

m
X̂X̂> + λI

)−1
∣∣∣∣∣
2

+∣∣∣∣∣
(

1

m
X̂X̂> + λI

)−1

BB>
(

1

m
X̂X̂> + λI

)−1

−
(

1

m
X̂X̂> + λI

)−1
X̂Y

m
B>

(
1

m
X̂X̂> + λI

)−1
∣∣∣∣∣+∣∣∣∣∣

(
1

m
X̂X̂> + λI

)−1
X̂Y

m
B>

(
1

m
X̂X̂> + λI

)−1

− M̂s

∣∣∣∣∣
It is easy to see that with a probability 1 − 3n−3, each term on the right hand side of the above
inequality is bounded by 12 lnn

λ2
√
n

, leading to the result of the theorem.
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