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Abstract

We study the scalability of consensus-based distributed optimization algorithms
by considering two questions: How many processors should we use for a given
problem, and how often should they communicate when communication is not
free? Central to our analysis is a problem-specific value r which quantifies the
communication/computation tradeoff. We show that organizing the communica-
tion among nodes as a k-regular expander graph [1] yields speedups, while when
all pairs of nodes communicate (as in a complete graph), there is an optimal num-
ber of processors that depends on r. Surprisingly, a speedup can be obtained,
in terms of the time to reach a fixed level of accuracy, by communicating less
and less frequently as the computation progresses. Experiments on a real cluster
solving metric learning and non-smooth convex minimization tasks demonstrate
strong agreement between theory and practice.

1 Introduction

How many processors should we use and how often should they communicate for large-scale dis-
tributed optimization? We address these questions by studying the performance and limitations of a
class of distributed algorithms that solve the general optimization problem

minimize
x∈X

F (x) =
1

m

m∑
j=1

lj(x) (1)

where each function lj(x) is convex over a convex set X ⊆ Rd. This formulation applies widely in
machine learning scenarios, where lj(x) measures the loss of model x with respect to data point j,
and F (x) is the cumulative loss over all m data points.

Although efficient serial algorithms exist [2], the increasing size of available data and problem di-
mensionality are pushing computers to their limits and the need for parallelization arises [3]. Among
many proposed distributed approaches for solving (1), we focus on consensus-based distributed op-
timization [4, 5, 6, 7] where each component function in (1) is assigned to a different node in a
network (i.e., the data is partitioned among the nodes), and the nodes interleave local gradient-based
optimization updates with communication using a consensus protocol to collectively converge to a
minimizer of F (x).

Consensus-based algorithms are attractive because they make distributed optimization possible with-
out requiring centralized coordination or significant network infrastructure (as opposed to, e.g., hi-
erarchical schemes [8]). In addition, they combine simplicity of implementation with robustness to
node failures and are resilient to communication delays [9]. These qualities are important in clusters,
which are typically shared among many users, and algorithms need to be immune to slow nodes that
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use part of their computation and communication resources for unrelated tasks. The main drawback
of consensus-based optimization algorithms comes from the potentially high communication cost
associated with distributed consensus. At the same time, existing convergence bounds in terms of it-
erations (e.g., (7) below) suggest that increasing the number of processors slows down convergence,
which contradicts the intuition that more computing resources are better.

This paper focuses on understanding the limitations and potential for scalability of consensus-based
optimization. We build on the distributed dual averaging framework [4]. The key to our analysis is
to attach to each iteration a cost that involves two competing terms: a computation cost per itera-
tion which decreases as we add more processors, and a communication cost which depends on the
network. Our cost expression quantifies the communication/computation tradeoff by a parameter r
that is easy to estimate for a given problem and platform. The role of r is essential; for example,
when nodes communicate at every iteration, we show that in complete graph topologies, there exists
an optimal number of processors nopt = 1√

r
, while for k-regular expander graphs [1], increasing

the network size yields a diminishing speedup. Similar results are obtained when nodes commu-
nicate every h > 1 iterations and even when h increases with time. We validate our analysis with
experiments on a cluster. Our results show a remarkable agreement between theory and practice.

In Section 2 we formalize the distributed optimization problem and summarize the distributed dual
averaging algorithm. Section 3 introduces the communication/computation tradeoff and contains the
basic analysis where nodes communicate at every iteration. The general case of sparsifying commu-
nication is treated in Section 4. Section 5 tests our theorical results on a real cluster implementation
and Section 6 discusses some future extensions.

2 Distributed Convex Optimization

Assume we have at our disposal a cluster with n processors to solve (1), and suppose without loss
of generality that m is divisible by n. In the absence of any other information, we partition the data
evenly among the processors and our objective becomes to solve the optimization problem,

minimize
x∈X

F (x) =
1

m

m∑
j=1

lj(x) =
1

n

n∑
i=1

 n

m

m
n∑
j=1

lj|i(x)

 =
1

n

n∑
i=1

fi(x) (2)

where we use the notation lj|i to denote loss associated with the jth local data point at processor
i (i.e., j|i = (i − 1)mn + j). The local objective functions fi(x) at each node are assumed to be
L-Lipschitz and convex. The recent distributed optimization literature contains multiple consensus-
based algorithms with similar rates of convergence for solving this type of problem. We adopt
the distributed dual averaging (DDA) framework [4] because its analysis admits a clear separation
between the standard (centralized) optimization error and the error due to distributing computation
over a network, facilitating our investigation of the communication/computation tradeoff.

2.1 Distributed Dual Averaging (DDA)

In DDA, nodes iteratively communicate and update optimization variables to solve (2). Nodes only
communicate if they are neighbors in a communication graphG = (V,E), with the |V | = n vertices
being the processors. The communication graph is user-defined (application layer) and does not
necessarily correspond to the physical interconnections between processors. DDA requires three
additional quantities: a 1-strongly convex proximal function ψ : Rd → R satisfying ψ(x) ≥ 0 and
ψ(0) = 0 (e.g., ψ(x) = 1

2x
Tx); a positive step size sequence a(t) = O( 1√

t
); and a n × n doubly

stochastic consensus matrix P with entries pij > 0 only if either i = j or (j, i) ∈ E and pij = 0
otherwise. The algorithm repeats for each node i in discrete steps t, the following updates:

zi(t) =

n∑
j=1

pijzj(t− 1) + gi(t− 1) (3)

xi(t) =argmin
x∈X

{
〈zi(t), x〉+

1

a(t)
ψ(x)

}
(4)

x̂i(t) =
1

t

(
(t− 1) · x̂i(t− 1) + xi(t)

)
(5)
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where gi(t−1) ∈ ∂fi(xi(t−1)) is a subgradient of fi(x) evaluated at xi(t−1). In (3), the variable
zi(t) ∈ Rd maintains an accumulated subgradient up to time t and represents node i’s belief of
the direction of the optimum. To update zi(t) in (3), each node must communicate to exchange the
variables zj(t) with its neighbors in G. If ψ(x∗) ≤ R2, for the local running averages x̂i(t) defined
in (5), the error from a minimizer x∗ of F (x) after T iterations is bounded by (Theorem 1, [4])

Erri(T ) = F (x̂i(T ))− F (x∗) ≤ R2

Ta(T )
+
L2

2T

T∑
t=1

a(t− 1)

+
L

T

T∑
t=1

a(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖∗ + ‖z̄(t)− zi(t)‖∗

 (6)

where L is the Lipschitz constant, ‖·‖∗ indicates the dual norm, z̄(t) = 1
n

∑n
i=1 zi(t), and

‖z̄(t)− zi(t)‖∗ quantifies the network error as a disagreement between the direction to the opti-
mum at node i and the consensus direction z̄(t) at time t. Furthermore, from Theorem 2 in [4], with
a(t) = A√

t
, after optimizing for A we have a bound on the error,

Erri(T ) ≤ C1
log (T

√
n)√

T
, C1 = 2LR

√
19 +

12

1−
√
λ2
, (7)

where λ2 is the second largest eigenvalue of P . The dependence on the communication topology
is reflected through λ2, since the sparsity structure of P is determined by G. According to (7),
increasing n slows down the rate of convergence even if λ2 does not depend on n.

3 Communication/Computation Tradeoff

In consensus-based distributed optimization algorithms such as DDA, the communication graph G
and the cost of transmitting a message have an important influence on convergence speed, especially
when communicating one message requires a non-trivial amount of time (e.g., if the dimension d of
the problem is very high).

We are interested in the shortest time to obtain an ε-accurate solution (i.e., Erri(T ) ≤ ε). From (7),
convergence is faster for topologies with good expansion properties; i.e., when the spectral gap
1 −
√
λ2 does not shrink too quickly as n grows. In addition, it is preferable to have a balanced

network, where each node has the same number of neighbors so that all nodes spend roughly the
same amount of time communicating per iteration. Below we focus on two particular cases and take
G to be either a complete graph (i.e., all pairs of nodes communicate) or a k-regular expander [1].

By using more processors, the total amount of communication inevitably increases. At the same
time, more data can be processed in parallel in the same amount of time. We focus on the scenario
where the size m of the dataset is fixed but possibly very large. To understand whether there is room
for speedup, we move away from measuring iterations and employ a time model that explicitly ac-
counts for communication cost. This will allow us to study the communication/computation tradeoff
and draw conclusions based on the total amount of time to reach an ε accuracy solution.

3.1 Time model

At each iteration, in step (3), processor i computes a local subgradient on its subset of the data:

gi(x) =
∂fi(x)

∂x
=

n

m

m
n∑
j=1

∂lj|i(x)

∂x
. (8)

The cost of this computation increases linearly with the subset size. Let us normalize time so that
one processor compute a subgradient on the full dataset of sizem in 1 time unit. Then, using n cpus,
each local gradient will take 1

n time units to compute. We ignore the time required to compute the
projection in step (4); often this can be done very efficiently and requires negligible time when m is
large compared to n and d.
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We account for the cost of communication as follows. In the consensus update (3), each pair of
neighbors in G transmits and receives one variable zj(t− 1). Since the message size depends only
on the problem dimension d and does not change with m or n, we denote by r the time required to
transmit and receive one message, relative to the 1 time unit required to compute the full gradient
on all the data. If every node has k neighbors, the cost of one iteration in a network of n nodes is

1

n
+ kr time units / iteration. (9)

Using this time model, we study the convergence rate bound (7) after attaching an appropriate time
unit cost per iteration. To obtain a speedup by increasing the number of processors n for a given
problem, we must ensure that ε-accuracy is achieved in fewer time units.

3.2 Simple Case: Communicate at every Iteration

In the original DDA description (3)-(5), nodes communicate at every iteration. According to our
time model, T iterations will cost τ = T ( 1

n + kr) time units. From (7), the time τ(ε) to reach error
ε is found by substituting for T and solving for τ(ε). Ignoring the log factor in (7), we get

C1
1√
τ(ε)
1
n+kr

= ε =⇒ τ(ε) =
C2

1

ε2

( 1

n
+ kr

)
time units. (10)

This simple manipulation reveals some important facts. If communication is free, then r = 0. If in
addition the network G is a k-regular expander, then λ2 is fixed [10], C1 is independent of n and
τ(ε) = C2

1/(ε
2n). Thus, in the ideal situation, we obtain a linear speedup by increasing the number

of processors, as one would expect. In reality, of course, communication is not free.

Complete graph. Suppose that G is the complete graph, where k = n − 1 and λ2 = 0. In this
scenario we cannot keep increasing the network size without eventually harming performance due
to the excessive communication cost. For a problem with a communication/computation tradeoff r,
the optimal number of processors is calculated by minimizing τ(ε) for n:

∂τ(ε)

∂n
= 0 =⇒ nopt =

1√
r
. (11)

Again, in accordance with intuition, if the communication cost is too high (i.e., r ≥ 1) and it takes
more time to transmit and receive a gradient than it takes to compute it, using a complete graph
cannot speedup the optimization. We reiterate that r is a quantity that can be easily measured for
a given hardware and a given optimization problem. As we report in Section 5, the optimal value
predicted by our theory agrees very well with experimental performance on a real cluster.

Expander. For the case where G is a k-regular expander, the communication cost per node remains
constant as n increases. From (10) and the expression for C1 in (7), we see that n can be increased
without losing performance, although the benefit diminishes (relative to kr) as n grows.

4 General Case: Sparse Communication

The previous section analyzes the case where processors communicate at every iteration. Next we
investigate the more general situation where we adjust the frequency of communication.

4.1 Bounded Intercommunication Intervals

Suppose that a consensus step takes place once every h+ 1 iterations. That is, the algorithm repeats
h ≥ 1 cheap iterations (no communication) of cost 1

n time units followed by an expensive iteration
(with communication) with cost 1

n + kr. This strategy clearly reduces the overall average cost per
iteration. The caveat is that the network error ‖z̄(t)− zi(t)‖∗ is higher because of having executed
fewer consensus steps.

In a cheap iteration we replace the update (3) by zi(t) = zi(t− 1) + gi(t− 1). After some straight-
forward algebra we can show that [for (12), (16) please consult the supplementary material]:

zi(t) =

Ht−1∑
w=0

h−1∑
k=0

n∑
j=1

[
PHt−w

]
ij
gj(wh+ k) +

Qt−1∑
k=0

gi(t−Qt + k). (12)
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where Ht = b t−1h c counts the number of communication steps in t iterations, and Qt = mod(t, h)
if mod(t, h) > 0 and Qt = h otherwise. Using the fact that P1 = 1, we obtain

z̄(t)− zi(t) =
1

n

n∑
s=1

zs(t)− zi(t) =

Ht−1∑
w=0

n∑
j=1

( 1

n
−
[
PHt−w

]
ij

) h−1∑
k=0

gj(wh+ k) (13)

+
1

n

n∑
s=1

Qt−1∑
k=0

(
gs(t−Qt + k)− gi(t−Qt + k)

)
. (14)

Taking norms, recalling that the fi are convex and Lipschitz, and since Qt ≤ h, we arrive at

‖z̄(t)− zi(t)‖∗ ≤
Ht−1∑
w=0

∥∥∥∥ 1

n
1T −

[
PHt−w

]
i,:

∥∥∥∥
1

hL+ 2hL (15)

Using a technique similar to that in [4] to bound the `1 distance of row i of PHt−w to its stationary
distribution as t grows, we can show that

‖z̄(t)− zi(t)‖∗ ≤ 2hL
log(T

√
n)

1−
√
λ2

+ 3hL (16)

for all t ≤ T . Comparing (16) to equation (29) in [4], the network error within t iterations is no more
than h times larger when a consensus step is only performed once every h + 1 iterations. Finally,
we substitute the network error in (6). For a(t) = A√

t
, we have

∑T
t=1 a(t) ≤ 2A

√
T , and

Erri(T ) ≤
(
R2

A
+AL2

(
1 +

12h

1−
√
λ2

+ 18h

))
log (T

√
n)√

T
= Ch

log (T
√
n)√

T
. (17)

We minimize the leading term Ch over A to obtain

A =
R

L

(√
1 + 18h+

12h

1−
√
λ2

)−1
and Ch = 2RL

√
1 + 18h+

12h

1−
√
λ2
. (18)

Of the T iterations, only HT = bT−1h c involve communication. So, T iterations will take

τ = (T −HT )
1

n
+HT

(
1

n
+ kr

)
=
T

n
+HT kr time units. (19)

To achieve ε-accuracy, ignoring again the logarithmic factor, we need T =
C2

h

ε2 iterations, or

τ(ε) =

(
T

n
+

⌊
T − 1

h

⌋
kr

)
≤ C2

h

ε2

(
1

n
+
kr

h

)
time units. (20)

From the last expression, for a fixed number of processors n, there exists an optimal value for h that
depends on the network size and communication graph G:

hopt =

√
nkr

18 + 12
1−
√
λ2

. (21)

If the network is a complete graph, using hopt yields τ(ε) = O(n); i.e., using more processors
hurts performance when not communicating every iteration. On the other hand, if the network is a
k-regular expander then τ(ε) = c1√

n
+ c2 for constants c1, c2, and we obtain a diminishing speedup.

4.2 Increasingly Sparse Communication

Next, we consider progressively increasing the intercommunication intervals. This captures the
intuition that as the optimization moves closer to the solution, progress slows down and a processor
should have “something significantly new to say” before it communicates. Let hj − 1 denote the
number of cheap iterations performed between the (j−1)st and jth expensive iteration; i.e., the first
communication is at iteration h1, the second at iteration h1 + h2, and so on. We consider schemes
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where hj = jp for p ≥ 0. The number of iterations that nodes communicate out of the first T total
iterations is given by HT = max{H :

∑H
j=1 hj ≤ T}. We have∫ HT

y=1

ypdy ≤
HT∑
j=1

jp ≤ 1 +

∫ HT

y=1

ypdy =⇒
Hp+1
T − 1

p+ 1
≤ T ≤

Hp+1
T + p

p+ 1
, (22)

which means that HT = Θ(T
1

p+1 ) as T →∞. Similar to (15), the network error is bounded as

‖z̄(t)− zi(t)‖∗ ≤
Ht−1∑
w=0

∥∥∥∥ 1

n
1T −

[
PHt−w

]
i,:

∥∥∥∥
1

hw−1∑
k=0

L+ 2htL = L

Ht−1∑
w=0

‖·‖1 hw + 2htL. (23)

We split the sum into two terms based on whether or not the powers of P have converged. Using the
split point t̂ = log(T

√
n)

1−
√
λ2

, the `1 term is bounded by 2 when w is large and by 1
T when w is small:

‖z̄(t)− zi(t)‖∗ ≤L
Ht−1−t̂∑
w=0

‖·‖1 hw + L

Ht−1∑
w=Ht−t̂

‖·‖1 hw + 2htL (24)

≤L
T

Ht−1−t̂∑
w=0

wp + 2L

Ht−1∑
w=Ht−t̂

wp + 2tpL (25)

≤L
T

(Ht − t̂− 1)
1

p+1 + p

p+ 1
+ 2Lt̂(Ht − 1)p + 2tpL (26)

≤ L

p+ 1
+

Lp

T (p+ 1)
+ 2Lt̂Hp

t + 2tpL (27)

since T > Ht − t̂ − 1. Substituting this bound into (6) and taking the step size sequence to be
a(t) = A

tq with A and q to be determined, we get

Erri(T ) ≤ R2

AT 1−q +
L2A

2(1− q)T q
+

3L2A

(p+ 1)(1− q)T q
+

3L2pA

(p+ 1)(1− q)T 1+q

+
6L2t̂A

T

T∑
t=1

Hp
t

tq
+

6L2A

T

T∑
t=1

tp−q. (28)

The first four summands converge to zero when 0 < q < 1. Since Ht = Θ(t
1

p+1 ),

1

T

T∑
t=1

Hp
t

tq
≤ 1

T

T∑
t=1

O(t
1

p+1 )p

tq
≤ O

(
T

p
p+1−q+1

T

)
= O

(
T

p
p+1−q

)
(29)

which converges to zero if p
p+1 < q. To bound the last term, note that 1

T

∑T
t=1 t

p−q ≤ Tp−q

p−q+1 ,
so the term goes to zero as T → ∞ if p < q. In conclusion, Erri(T ) converges no slower than
O( log (T

√
n)

T q−p ) since 1

T
q− p

p+1
< 1

T q−p . If we choose q = 1
2 to balance the first three summands, for

small p > 0, the rate of convergence is arbitrarily close to O( log (T
√
n)√

T
), while nodes communicate

increasingly infrequently as T →∞.

Out of T total iterations, DDA executes HT = Θ(T
p

p+1 ) expensive iterations involving communi-
cation and T −HT cheap iterations without communication, so

τ(ε) = O

(
T

n
+ T

p
p+1 kr

)
= O

(
T

(
1

n
+

kr

T
1

p+1

))
. (30)

In this case, the communication cost kr becomes a less and less significant proportion of τ(ε) as T
increases. So for any 0 < p < 1

2 , if k is fixed, we approach a linear speedup behaviour Θ(Tn ). To
get Erri(T ) ≤ ε, ignoring the logarithmic factor, we need

T =

(
Cp
ε

) 2
1−2p

iterations, with Cp = 2LR

√
7 +

12p+ 12

(3p+ 1)(1−
√
λ2)

+
12

2p+ 1
. (31)

From this last equation we see that for 0 < p < 1
2 we have Cp < C1, so using increasingly sparse

communication should, in fact, be faster than communicating at every iteration.
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5 Experimental Evaluation

To verify our theoretical findings, we implement DDA on a cluster of 14 nodes with 3.2 GHz Pen-
tium 4HT processors and 1 GB of memory each, connected via ethernet that allows for roughly
11 MB/sec throughput per node. Our implementation is in C++ using the send and receive functions
of OpenMPI v1.4.4 for communication. The Armadillo v2.3.91 library, linked to LAPACK and
BLAS, is used for efficient numerical computations.

5.1 Application to Metric Learning

Metric learning [11, 12, 13] is a computationally intensive problem where the goal is to find a
distance metric D(u, v) such that points that are related have a very small distance under D while
for unrelated pointsD is large. Following the formulation in [14], we have a data set {uj , vj , sj}mj=1

with uj , vj ∈ Rd and sj = {−1, 1} signifying whether or not uj is similar to vj (e.g., similar if
they are from the same class). Our goal is to find a symmetric positive semi-definite matrix A � 0

to define a pseudo-metric of the form DA(u, v) =
√

(u− v)TA(u− v). To that end, we use a
hinge-type loss function lj(A, b) = max{0, sj

(
DA(uj , vj)

2 − b
)

+ 1} where b ≥ 1 is a threshold
that determines whether two points are dissimilar according to DA(·, ·). In the batch setting, we
formulate the convex optimization problem

minimize
A,b

F (A, b) =

m∑
j=1

lj(A, b) subject to A � 0, b ≥ 1. (32)

The subgradient of lj at (A, b) is zero if sj(DA(uj , vj)
2 − b) ≤ −1. Otherwise

∂lj(A, b)

∂A
= sj(uj − vj)T (uj − vj), and

∂lj(A, b)

∂b
= −sj . (33)

Since DDA uses vectors xi(t) and zi(t), we represent each pair (Ai(t), bi(t)) as a d2+1 dimensional
vector. The communication cost is thus quadratic in the dimension. In step (3) of DDA, we use the
proximal function ψ(x) = 1

2x
Tx, in which case (4) simplifies to taking xi(t) = −a(t − 1)zi(t),

followed by projecting xi(t) to the constraint set by setting bi(t) ← max{1, bi(t)} and projecting
Ai(t) to the set of positive semi-definite matrices by first taking its eigenvalue decomposition and
reconstructing Ai(t) after forcing any negative eigenvalues to zero.

We use the MNIST digits dataset which consists of 28 × 28 pixel images of handwritten digits 0
through 9. Representing images as vectors, we have d = 282 = 784 and a problem with d2 + 1 =
614657 dimensions trying to learn a 784 × 784 matrix A. With double precision arithmetic, each
DDA message has a size approximately 4.7 MB. We construct a dataset by randomly selecting 5000
pairs from the full MNIST data. One node needs 29 seconds to compute a gradient on this dataset,
and sending and receiving 4.7 MB takes 0.85 seconds. The communication/computation tradeoff
value is estimated as r = 0.85

29 ≈ 0.0293. According to (11), when G is a complete graph, we
expect to have optimal performance when using nopt = 1√

r
= 5.8 nodes. Figure 1(left) shows the

evolution of the average function value F̄ (t) = 1
n

∑
i F (x̂i(t)) for 1 to 14 processors connected as

a complete graph, where x̂i(t) is as defined in (5). There is a very good match between theory and
practice since the fastest convergence is achieved with n = 6 nodes.

In the second experiment, to make r closer to 0, we apply PCA to the original data and keep the top
87 principal components, containing 90% of the energy. The dimension of the problem is reduced
dramatically to 87 · 87 + 1 = 7570 and the message size to 59 KB. Using 60000 random pairs of
MNIST data, the time to compute one gradient on the entire dataset with one node is 2.1 seconds,
while the time to transmit and receive 59 KB is only 0.0104 seconds. Again, for a complete graph,
Figure 1(right) illustrates the evolution of F̄ (t) for 1 to 14 nodes. As we see, increasing n speeds up
the computation. The speedup we get is close to linear at first, but diminishes since communication
is not entirely free. In this case r = 0.0104

2.1 = 0.005 and nopt = 14.15.

5.2 Nonsmooth Convex Minimization

Next we create an artificial problem where the minima of the components fi(x) at each node are
very different, so that communication is essential in order to obtain an accurate optimizer of F (x).
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Figure 1: (Left) In a subset of the Full MNIST data for our specific hardware, nopt = 1√
r

= 5.8. The
fastest convergence is achieved on a complete graph of 6 nodes. (Right) In the reduced MNIST data
using PCA, the communication cost drops and a speedup is achieved by scaling up to 14 processors.

We define fi(x) as a sum of high dimensional quadratics,

fi(x) =

M∑
j=1

max
(
l1j|i(x), l2j|i(x)

)
, lξj|i(x) = (x− cξj|i)

T (x− cξj|i), ξ ∈ {1, 2}, (34)

where x ∈ R10,000, M = 15, 000 and c1j|i, c
2
j|i are the centers of the quadratics. Figure 2 illustrates

again the average function value F̄ (t) for 10 nodes in a complete graph topology. The baseline per-
formance is when nodes communicate at every iteration (h = 1). For this problem r = 0.00089 and,
from (21), hopt = 1. Naturally communicating every 2 iterations (h = 2) slows down convergence.
Over the duration of the experiment, with h = 2, each node communicates with its peers 55 times.
We selected p = 0.3 for increasingly sparse communication, and got HT = 53 communications
per node. As we see, even though nodes communicate as much as the h = 2 case, convergence is
even faster than communicating at every iteration. This verifies our intuition that communication is
more important in the beginning. Finally, the case where p = 1 is shown. This value is out of the
permissible range, and as expected DDA does not converge to the right solution.

20 40 60 80 100 120 140 1601.2

1.4

1.6

1.8

2

2.2

2.4

x 105

Time (sec)

F̄
(t
)

 

 

h = 1
h = 2
h = t0.3

h = t

Figure 2: Sparsifying communication to minimize (34) with 10 nodes in a complete graph topology.
When waiting t0.3 iterations between consensus steps, convergence is faster than communicating
at every iteration (h = 1), even though the total number of consensus steps performed over the
duration of the experiment is equal to communicating every 2 iterations (h = 2). When waiting a
linear number of iterations between consensus steps (h = t) DDA does not converge to the right
solution. Note: all methods are initialized from the same value; the x-axis starts at 5 sec.

6 Conclusions and Future Work

The analysis and experimental evaluation in this paper focus on distributed dual averaging and re-
veal the capability of distributed dual averaging to scale with the network size. We expect that
similar results hold for other consensus-based algorithms such as [5] as well as various distributed
averaging-type algorithms (e.g., [15, 16, 17]). In the future we will extend the analysis to the case of
stochastic optimization, where ht = tp could correspond to using increasingly larger mini-batches.
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7 Appendix

7.1 Proof of equation (12)

Let us stack the local node variables in a vector z = [z1 · · · zn]T and g = [g1 · · · gn]T . From (3) in matrix
form we have after back-substituting in the recursion

z(h+ 1) = Pz(h) + g(h) = P

h−1∑
k=0

g(k) + g(h) (35)

and after some algebra

z(sh+ 1) =

s∑
w=1

h−1∑
k=0

Pwg
(
(s− w)h+ k

)
+ g(sh) (36)

or in general

z(t) =

Ht∑
w=1

h−1∑
k=0

Pwg
(
(Ht − w)h+ k

)
+

Qt−1∑
k=0

g(t−Qt + k) (37)

=

Ht∑
w=1

h−1∑
k=0

PHt−w+1g
(
(w − 1)h+ k

)
+

Qt−1∑
k=0

g(t−Qt + k) (38)

=

Ht−1∑
w=0

h−1∑
k=0

PHt−wg
(
wh+ k

)
+

Qt−1∑
k=0

g(t−Qt + k) (39)

where Ht = b t−1
h
c counts the number of communication steps in t iterations and Qt = mod(t, h) if

mod(t, h) > 0 and Qt = h otherwise. From this last expression we take the i-th row to get the result.

7.2 Proof of equation (16)

If the consensus matrix P is doubly stochastic it is straightforward to show that P t → 1
n
11T as t → ∞.

Moreover, from standard Perron-Frobenius is it easy to show (see e.g., [?])∥∥∥∥ 1n1T − [P t]i,:
∥∥∥∥
1

= 2

∥∥∥∥ 1n1T − [P t]i,:
∥∥∥∥
TV

≤
√
n
(√

λ2

)t
(40)

so in our case
∥∥∥ 1
n
1T −

[
PHt−w

]
i,:

∥∥∥
1
≤
√
n
(√
λ2

)Ht−w. Next, demand that the right hand side bound is

less than
√
nδ with δ to be determined:

√
n
(√

λ2

)Ht−w
≤
√
nδ ⇒ Ht − w ≥

log (δ−1)

log (
√
λ2
−1

)
. (41)

So with the choice δ−1 =
√
nT ,∥∥∥∥ 1n1T − [PHt−w

]
i,:

∥∥∥∥
1

≤
√
n

1√
nT

=
1

T
(42)

if Ht −w ≥ log (δ−1)

log (
√
λ2

−1)
= t̂. When w is large and Ht −w < t̂ we simply take

∥∥∥ 1
n
1T −

[
PHt−w

]
i,:

∥∥∥
1
≤ 2.

The desired bound of (??) is not obtained as follows
Ht−1∑
w=0

∥∥∥∥ 1n1T − [PHt−w
]
i,:

∥∥∥∥
1

hL+ 2hL

=

Ht−t̂−1∑
w=0

∥∥∥∥ 1n1T − [PHt−w
]
i,:

∥∥∥∥
1

+

Ht−1∑
Ht−t̂

∥∥∥∥ 1n1T − [PHt−w
]
i,:

∥∥∥∥
1

hL+ 2hL (43)

≤

Ht−t̂−1∑
w=0

1

T
+

Ht−1∑
Ht−t̂

2

hL+ 2hL (44)

≤ Ht − t̂
T

hL+ 2t̂hL+ 2hL. (45)

Since t < T we know that Ht − t̂ < T . Moreover, log (
√
λ2)
−1 ≥ 1−

√
λ2. Using there two fact we arrive

at the result.

10


