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1 Proofs

Lemma 1. A tree ψn has T (ψn) =
(n−1)!

∏
n−1

i=1
mi

possible orderings on its internal nodes, where

mi is the number of internal nodes in the subtree rooted at node i.

Proof. This can be done with a recursion relation. Consider an unordered tree ψn with nl
leaves in the left subtree, nr in the right, and define mi = ni−1 to be the number of internal
nodes of subtree i. Additionally, there are kl possible orderings of the left subtree’s internal
nodes, and kr possible orderings of the right subtree’s internal nodes. Consider the case
where kl = kr = 1, where we need to count the number of ways in which the two sequences
of length mr and ml can be ”interleaved”. There are (mr +ml)! possible orderings of the
mr +ml nodes if we have no constraints on the orderings of the right nodes with respect to
each other, and no such constraints for the left nodes. Thus, the total number of ways to

interleave the two sequences is (mr+ml)!
mr!ml!

=
(

mr+ml

mr

)

. See Figure 1. For kr, kl > 1, we simply
multiply these in, giving the total number of orderings as:

(

mr +ml

mr

)

krkl

Note we can apply the same logic to the right and left subtrees to determine kr and kl.
Given the children of node i are li and ri, the number of orderings ki consistent with a
particular subtree i is:

ki =

(

mri +mli

mri

)

krikli

So we can write out the total number of orderings as a product over all internal nodes of
the tree:

T (ψn) =

n−1
∏

i=1

(

mri +mli

mri

)

Furthermore, note thatmi = mli+mri+1 (the number of internal nodes in a tree is the sum
of those in the subtrees, plus the root), so the denominator of the binomial coefficients of a
parent node will cancel the numerators of the coefficients of its children, however leaving a
term proportional to 1

mi

, and the numerator of the root will not be canceled. Thus we have:

T (ψn) =
(n− 1)!
∏n−1
i=1 mi

Theorem 1. p(ψn) defines an exchangeable and consistent prior over Ψn
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Figure 1: A tree with two unbalanced subtrees. The internal nodes for each of the subtrees
can only be ordered in one way with respect to each other, however, for the overall tree
there are 6!

3!3! =
(

6
3

)

= 20 orderings of the internal nodes.

Proof. Since p(ψn) doesn’t depend on the order of data seen, it is exchangeable. Thus
for consistency all we need to show is that we have a well defined conditional prior; ie
that when we marginalize out a particular point from p(ψn) we get back p(ψn−1), if ψn−1

is a tree structure obtained by removing a leaf from ψn. We can do this by showing
∑

ψn+1∈C(ψn)
p(ψn+1) = p(ψn), where C(ψn) is the set of ψn+1 structurally consistent with

a particular ψn. This is equivalent to showing:

∑

ψn+1∈C(ψn)

T (ψn+1) =

(

n+ 1

2

)

T (ψn)

which can be proven by induction, and we take this as our inductive hypothesis for all l < n.
The base case for n = 1:

T (ψ2) =
(2− 1)!

1!1!
= 1 =

(

2

2

)

=

(

2

2

)

T (ψ1)

Consider the tree ψn and its two subtrees ψnl
and ψnr

. As listed before, we have T (ψn) =
(

ml+mr

ml

)

T (ψnl
)T (ψnr

). Depending on where we add the n + 1st point, (denoted xn+1) we
have:

T (ψn+1) =











(

ml+mr+1
ml+1

)

T (ψnl+1)T (ψnr
) if xn+1 is added to the left subtree

(

ml+mr+1
mr+1

)

T (ψnl
)T (ψnr+1) if xn+1 is added to the right subtree

(

ml+mr+1
ml+mr

)(

ml+mr

mr

)

T (ψnl
)T (ψnr

) if xn+1 is added above the root

Summing over all such ψn+1, and invoking the inductive hypothesis, we have:

∑

ψn+1∈C(ψn)

T (ψn+1) =

(

ml +mr + 1

ml + 1

)(

nl + 1

2

)

T (ψnl
)T (ψnr

)

+

(

ml +mr + 1

mr + 1

)(

nr + 1

2

)

T (ψnl
)T (ψnr

)

+ (ml +mr + 1)

(

ml +mr

ml

)

T (ψnl
)T (ψnr

)
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=

(

ml +mr

ml

)

T (ψnl
)T (ψnr

)

(

ml +mr + 1

ml + 1

(nl + 1)nl
2

+
ml +mr + 1

mr + 1

(nr + 1)nr
2

+ 1

)

= T (ψn)

(

(n− 1)(nl + nr + 2)

2
+ 1

)

= T (ψn)

(

(n− 1)(n+ 2)

2
+

2

2

)

=

(

n+ 1

2

)

T (ψn)
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Figure 2: Posterior sample from our model applied to the leukemia dataset. Best viewed in color. Each pure subtree is painted a color unique to the
class associated with it. The OTHERS class is a set of datapoints to which no diagnostic label was assigned.
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