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A Proof of Lemma 1

Following the standard analysis of gradient descent methods, we have for any x € B,
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Then we have
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By using the bound on ||V f(x:)||2 and ||Vg(x;)||2, we obtain the first inequality in Lemma 1. To
prove the second inequality in Lemma 1, we follow the same analysis, i.e.,
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Then we have
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By induction, it is straightforward to show that A; < Cs5/~, which yields the second inequality in
Lemma 1, i.e.,
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B Proof of Lemma 2

Since L:(x, A) is convex in x and concave in A, we have the following inequalities
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Using the inequalities in Lemma 1, we have
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where (1(x) = (x — x;) T (Vf(x¢,&) — Vf(xy)) as abbreviated before. Since ny = --- = 1y,
denoted by 7, by taking summation of above two inequalities over ¢t = 1,--- , T, we get
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By plugging the expression of L(x A), and due to ||x||2 < 1, we have
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Let x = x* = argmingex f(x). By taking minimization over A > 0 on left hand side and
considering n = v/(2G%), we have
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C Proof of Lemma 3
Since F'(x) is strongly convex in x, we have
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Following the same analysis as in Lemma 1, we have
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Taking summation of above inequality overt = 1,--- , T gives
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Since n; = 1/(2pt), we have
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We complete the proof by letting x = x* = arg minyex f(X).

T
D lIx =3
t=1

D Proof of Lemma 4

The proof is based on the Berstein inequality for martingales [1] which is restated here for com-
pleteness.

Theorem 1. (Bernsteins inequality for martingales). Let X1, ..., X, be a bounded martingale
difference sequence with respect to the filtration F = (F;)1<i<n and with | X;|| < K. Let
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be the associated martingale. Denote the sum of the conditional variances by
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Then for all constants t, v > 0,
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Proof of Lemma 4. Define martingale difference X, = (x — x;) T (Vf(x¢) — Vf(x¢,&;)) and mar-
tingale Ap = Zthl X;. Define the conditional variance 2. as
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where we use the fact ||x; —x||3 < 4 for any x € B, and the last step follows the Bernstein inequality
for martingales. We complete the proof by setting 7 = In(m/J).
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