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Abstract

Conditional Markov Chains (also known as Linear-Chain Conditional Random
Fields in the literature) are a versatile class of discriminative models for the dis-
tribution of a sequence of hidden states conditional on a sequence of observable
variables. Large-sample properties of Conditional Markov Chains have been first
studied in [1]. The paper extends this work in two directions: first, mixing prop-
erties of models with unbounded feature functions are being established; second,
necessary conditions for model identifiability and the uniqueness of maximum
likelihood estimates are being given.

1 Introduction

Conditional Random Fields (CRF) are a widely popular class of discriminative models for the dis-
tribution of a set of hidden states conditional on a set of observable variables. The fundamental
assumption is that the hidden states, conditional on the observations, form a Markov random field
[2,3]. Of special importance, particularly for the modeling of sequential data, is the case where the
underlying undirected graphical model forms a simple linear chain. In the literature, this subclass
of models is often referred to as Linear-Chain Conditional Random Fields. This paper adopts the
terminology of [4] and refers to such models as Conditional Markov Chains (CMC).

Large-sample properties of CRFs and CMCs have been first studied in [1] and [5]. [1] defines CMCs
of infinite length and studies ergodic properties of the joint sequences of observations and hidden
states. The analysis relies on fundamental results from the theory of weak ergodicity [6]. The
exposition is restricted to CMCs with bounded feature functions which precludes the application,
e.g., to models with linear features and Gaussian observations. [5] considers weak consistency
and central limit theorems for models with a more general structure. Ergodicity and mixing of the
models is assumed, but no explicit conditions on the feature functions or on the distribution of the
observations are given. An analysis of model identifiability in the case of finite sequences can be
found in [7].

The present paper studies mixing properties of Conditional Markov Chains with unbounded feature
functions. The results are fundamental for analyzing the consistency of Maximum Likelihood es-
timates and establishing Central Limit Theorems (which are very useful for constructing statistical
hypothesis tests, e.g., for model misspecificiations and the signficance of features). The paper is or-
ganized as follows: Sec. 2 reviews the definition of infinite CMCs and some of their basic properties.
In Sec. 3 the ergodicity results from [1] are extended to models with unbounded feature functions.
Sec. 4 establishes various mixing properties. A key result is that, in order to allow for unbounded
feature functions, the observations need to follow a distribution such that Hoeffding-type concentra-
tion inequalities can be established. Furthermore, the mixing rates depend on the tail behaviour of
the distribution. In Sec. 5 the mixture properties are used to analyze model identifiability and con-
sistency of the Maximum Likelihood estimates. Sec. 6 concludes with an outlook on open problems
for future research.



2 Conditional Markov Chains

Preliminaries. We use N, Z and R to denote the sets of natural numbers, integers and real numbers,
respectively. Let X be a metric space with the Borel sigma-field A, and Y be a finite set. Further-
more, consider a probability space (Ω,F ,P) and let X = (Xt)t∈Z, Y = (Yt)t∈Z be sequences of
measurable mappings from Ω into X and Y , respectively. Here,

• X is an infinite sequence of observations ranging in the domain X ,

• Y is an aligned sequence of hidden states taking values in the finite set Y .

For now, the distribution of X is arbitrary. Next we define Conditional Markov Chains, which
parameterize the conditional distribution of Y givenX .

Definition. Consider a vector f of real-valued functions f : X × Y × Y → R, called the feature
functions. Throughout this paper, we assume that the following condition is satisfied:

(A1) All feature functions are finite: |f(x, i, j)| <∞ for all x ∈ X and i, j ∈ Y .

Associated with the feature functions is a vector λ of real-valued model-weights. The key in the
definition of Conditional Markov Chains is the matrixM(x) with the (i, j)-th component

m(x, i, j) = exp(λTf(x, i, j)).

In terms of statistical physics, m(x, i, j) measures the potential of the transition between the hidden
states i and j from time t−1 to t, given the observation x at time t. Next, for a sequence x = (xt)t∈Z
in X and time points s, t ∈ Z with s ≤ t, introduce the vectors

αts(x) = M(xt)
T . . .M(xs)

T (1, 1, . . . , 1)T ,

βts(x) = M(xs+1) . . .M(xt) (1, 1, . . . , 1)T ,

and write αts(x, i) and βts(x, j) to denote the ith respectively jth components. Intuitively, αts(x, i)
measures the potential of the hidden state i at time t given the observations xs, . . . , xt and assuming
that at time s − 1 all hidden states have potential equal to 1. Similarly, βts(x, j) is the potential of
j at time s assuming equal potential of all hidden states at time t. Now let t ∈ Z and k ∈ N, and
define the distribution of the labels Yt, . . . , Yt+k conditional onX ,

P(Yt = yt, . . . , Yt+k = yt+k |X) :=

k∏
i=1

m(Xt+i, yt+i−1, yt+i)

× lim
n→∞

αtt−n(X, yt)β
t+k+n
t+k (X, yt+k)

αtt−n(X)Tβt+k+nt (X)
.

Note that, under assumption (A1), the limit on the right hand side is well-defined (see Theorem 2 in
[1]). Furthermore, the family of all marginal distributions obtained this way satisfies the consistency
conditions of Kolmogorov’s Extension Theorem. Hence we obtain a unique distribution for Y
conditional onX parameterized by the feature functions f and the model weights λ. Intuitively, the
distribution is obtained by conditioning the marginal distributions of Y on the finite observational
context (Xt−n, . . . , Xt+k+n), and then letting the size of the context going to infinity.

Basic properties. We introduce the following notation: For any matrix P = (pij) with strictly
positive entries let φ(P ) denote the mixing coefficient

φ(P ) = min
i,j,k,l

pikpjl
pjkpil

.

Note that 0 ≤ φ(P ) ≤ 1. This coefficient will play a key role in the analysis of mixing properties.
The following corollary summarizes fundamental properties of the distribution of Y conditional on
X , which directly follow from the above definition (also confer Corollary 1 in [1]).



Corollary 1. Suppose that condition (A1) holds true. Then Y conditional on X forms a time-
inhomogeneous Markov chain. Moreover, if X is strictly stationary, then the joint distribution
of the aligned sequences (X,Y ) is strictly stationary. The conditional transition probabilities
Pt(x, i, j) := P(Yt = j |Yt−1 = i,X = x) of Y givenX = x have the following form:

Pt(x, i, j) = m(xt, i, j) lim
n→∞

βnt (x, j)

βnt−1(x, i)
.

In particular, a lower bound for Pt(x, i, j) is given by

Pt(x, i, j) ≥ m(xt, i, j) (mink∈Y m(xt+1, i, k))

|Y| (maxk∈Y m(xt, j, k)) (maxk,l∈Y m(xt+1, k, l))
,

and the matrix of transition probabilities P t(x), with the (i, j)-th component given by Pt(x, i, j),
satisfies φ(P t(x)) = φ(M(xt)).

3 Ergodicity

In this section we establish conditions under which the aligned sequences (X,Y ) are jointly er-
godic. Let us first recall the definition of ergodicity of X (see [8]): By X we denote the space of
sequences x = (xt)t∈Z in X , and by A the corresponding product σ-field. Consider the probability
measure PX on (X ,A) defined by PX(A) := P(X ∈ A) for A ∈ A. Finally, let τ denote the
operator on X which shifts sequences one position to the left: τx = (xt+1)t∈Z. Then ergodicity of
X is formally defined as follows:

(A2) X is ergodic, that is, PX(A) = PX(τ−1A) for every A ∈ A, and PX(A) ∈ {0, 1} for
every setA ∈ A satisfyingA = τ−1A.

As a particular consequence of the invariance PX(A) = PX(τ−1A), we obtain that X is strictly
stationary. Now we are able to formulate the key result of this section, which will be of central
importance in the later analysis. For simplicity, we state it for functions depending on the values
of X and Y only at time t. The generalization of the statement is straight-forward. In our later
analysis, we will use the theorem to show that the time average of feature functions f(Xt, Yt−1, Yt)
converges to the expected value E[f(Xt, Yt−1, Yt)].

Theorem 1. Suppose that conditions (A1) and (A2) hold, and g : X × Y → R is a function which
satisfies E[|g(Xt, Yt)|] <∞. Then

lim
n→∞

1

n

n∑
t=1

g(Xt, Yt) = E[g(Xt, Yt)] P-almost surely.

Proof. Consider the sequence Z = (Zt)t∈N given by Zt := (τ t−1X, Yt), where we write τ t−1 to
denote the (t− 1)th iterate of τ . Note that Zt represents the hidden state at time t together with the
entire aligned sequence of observations τ t−1X . In the literature, such models are known as Markov
sequences in random environments (see [9]). The key step in the proof is to show that Z is ergodic.
Then, for any function h : X × Y → R with E[|h(Zt)|] < ∞, the time average 1

n

∑n
t=1 h(Zt)

converges to the expected value E[h(Zt)] P-almost surely. Applying this result to the composition
of the function g and the projection of (τ t−1X, Yt) onto (Xt, Yt) completes the proof.

Let Z = X × Y , and write C for the corresponding product σ-field A ⊗ B. In order to establish
ergodicity ofZ, we represent the distribution ofZ in terms of an initial distribution µ and a Markov
kernel Q on (Z, C). The initial distribution is given by µ(A × {i}) := P(τX ∈ A, Y1 = i). The
Markov kernel is defined by

Q(A× {j} | (x, i)) :=

{
P1(x, i, j) if τx ∈ A,

0 otherwise.

By the stationarity of X it follows that the joint sequence (X,Y ) is stationary (see Corollary 1),
hence it is not difficult to see that the measure µ is Q-invariant, µ(C) =

∫
Z Q(C|z)µ(dz) for every

C ∈ C. For the proof that Z is ergodic, it only remains to show that the Q-invariant measure µ is



unique (see Corollary 2.5.2 in [10]). In order to do so, let u : Z → R be an arbitrary function with∫
Z |u(z)|µ(dz) <∞ and u(z) > 0 for all z ∈ Z , and consider the conservative set,

C∗ :=
{
z ∈ Z : lim

n→∞

n∑
k=1

∫
Z
u(z′)Qk(dz′|z) = ∞

}
where Qk denotes the kth iterate of the Markov kernel, Qk(C|z) =

∫
Z Q(C|z′)Qk−1(dz′|z).

Furthermore, let Ci denote the class of invariant sets, containing all sets C ∈ C for which
1C(z) = Q(C|z) µ-almost surely. According to Theorem VI.A in [11], if Z = C∗ up to a µ-null
set, and if the class of invariant sets is trivial (that is, µ(C) = 0 or µ(C) = 1 for every C ∈ Ci), then
there exists at most one invariant probability measure on (Z, C). Since µ is an invariant probability
measure on (Z, C), it then has to be unique.

Let us analyze the conservative set. Note that, for z = (x, i) ∈ Z ,∫
Z
u(z′)Qk(dz′|z) =

∑
j∈Y

u(τkx, j) [P 1(x) . . .P k(x)]ij

where we use [P 1(x) . . .P k(x)]ij to denote the (i, j)-th component of the product of the transition
probability matrices P 1(x), . . . , P k(x). Using the same techniques as in the proof of Theorem ??,
we obtain that the rows of this matrix product converge to proportionality as k tends to∞. Moreover,
the row sums are equal to 1, so at least one entry per row is strictly positive. By the ergodicity of
X , we have 1

n

∑n
k=1 u(τkx, j) =

∫
X u(x′, j)PX(dx′), and the right hand side is strictly greater

than 0. Hence the unnormalized series on the left hand side would tend to∞. This argument shows
that the series in the definition of C∗ diverges for µ-almost every z ∈ Z , and hence C∗ = Z up to a
µ-null set.

To show that Ci is trivial, let C ∈ Ci be such that µ(C) > 0 and 1C(z) = Q(C|z) for µ-almost
every z ∈ Z . According to (A1), the transition probabilities P1(x, i, j) are all strictly greater than 0
for PX -almost every x ∈ X . Hence, a necessary condition for Q(C|z) = 1 is that C = A× Y for
some set A ∈ A. Therefore, we have Q(C|z) = 1A(τx) and 1C(z) = 1A(x) for µ-almost every
z = (x, i) ∈ Z . Now, note that 1A(τx) = 1A(x) is equivalent to A = τ−1A. As a consequence
of assumption (A2), we have PX(A) = 0 or PX(A) = 1 for each set A satisfying this condition,
which implies that µ(C) = 0 or µ(C) = 1. The proof is complete.

4 Mixing properties

In this section we are going to study mixing properties of the aligned sequences (X,Y ). To establish
the results, we will assume that the distribution of the observations X satisfies conditions under
which certain concentration inequalities hold true:

(A3) Let A ⊂ A be a measurable set, with p := P(Xt ∈ A) and Sn(x) := 1
n

∑n
t=1 1(xt ∈ A)

for x ∈ X . Then there exists a constant γ such that, for all n ∈ N and ε > 0,

P(|Sn(X)− p| ≥ ε) ≤ exp(−γ ε2n).

IfX is a sequence of independent random variables, then (A3) follows by Hoeffding’s inequality. In
the dependent case, concentration inequalities of this type can be obtained by imposing Martingale
or mixing conditions on X (see [12,13]). Furthermore, we will make the following assumption,
which relates the feature functions to the tail behaviour of the distribution ofX:

(A4) Let h : [0,∞) → [0,∞) be a differentiable decreasing function with h(z) = O(z−(1+κ))
for some κ > 0. Furthermore, let

F (x) :=
∑
j,k∈Y

|λTf(x, j, k)|

for x ∈ X . Then E[h(F (Xt))
−1] and E[h′(F (Xt))

−1] both exist and are finite.

The following theorem establishes conditions under which the expected conditional covariances of
square-integrable functions are summable. The result is obtained by studying ergodic properties of
the transition probability matrices.



Theorem 2. Suppose that conditions (A1) - (A3) hold true, and g : X × Y → R is a function with
finite second moment, E[|g(Xt, Yt)|2] < ∞. Let γt,k(X) = Cov(g(Xt, Yt), g(Xt+k, Yt+k) |X)
denote the covariance of g(Xt, Yt) and g(Xt+k, Yt+k) conditional onX . Then, for every t ∈ Z:

lim
n→∞

n∑
k=1

E[|γt,k(X)|] < ∞.

Proof. Without loss of generality we may assume that g can be written as g(x, y) = g(x)1(y = i).
Hence, using Hölder’s inequality, we obtain

E[|γt,k(X)|] ≤ E[|g(Xt)|]E[|g(Xt+k)|]E[|Cov(1(Yt = i),1(Yt+k = i) |X)|].
According to the assumptions, we have E[|g(Xt)|] = E[|g(Xt+k)|] <∞, so we only need to bound
the expectation of the conditional covariance. Note that

Cov(1(Yt = i),1(Yt+k = i) |X) = P(Yt = i, Yt+k = i |X)− P(Yt = i |X)P(Yt+k = i |X).

Recall the definition of φ(P ) before Corollary 1. Using probabilistic arguments, it is not difficult to
show that the ratio of P(Yt = i, Yt+k = i |X) to P(Yt = i |X)P(Yt+k = i |X) is greater than or
equal to φ(P t+1(X) . . .P t+k(X)), where P t+1(X), . . . , P t+k(X) denote the transition matrices
introduced in Proposition 1. Hence,

|Cov(1(Yt = i),1(Yt+k = i) |X)| ≤ P(Yt = i, Yt+k = i |X)[1− φ(P t+1(X) . . .P t+k(X))].

Now, using results from the theory of weak ergodicity (see Chapter 3 in [6]), we can establish

1−
√
φ(P t+1(x) . . .P t+k(x))

1 +
√
φ(P t+1(x) . . .P t+k(x))

≤
k∏
j=1

1−
√
φ(P t+j(x))

1 +
√
φ(P t+j(x))

for all x ∈ X . Using Bernoulli’s inequality and the fact φ(P t+j(x)) = M(xt+j) established in
Proposition 1, we obtain φ(P t+1(x) . . .P t+k(x)) ≥ 1−4

∏k
j=1[1−φ(M(xt+j))]. Consequently,

|Cov(1(Yt = i),1(Yt+k = i) |X)| ≤ 4

k∏
j=1

[1− φ(M(Xt+j))].

With the notation introduced in assumption (A3), let δ > 0 and A ⊂ X with p > 0 be such that
x ∈ A implies φ(M(x)) ≥ δ. Furthermore, let ε be a constant with 0 < ε < p. In order to
bound |Cov(1(Yt = i),1(Yt+k = i) |X)| for a given k ∈ N, we distinguish two different cases: If
|Sk(X)− p| < ε, then we obtain

4

k∏
j=1

(
1− φ(M(Xt+j))

)
≤ 4 (1− δ)k(p−ε).

If |Sk(X) − p| ≥ ε, then we use the trivial upper bound 1. According to assumption (A3), the
probability of the latter event is bounded by an exponential, and hence

E[|Cov(1(Yt = i),1(Yt+k = i) |X)|] ≤ 4 (1− δ)k(p−ε) + exp(−γ ε2k).

Obviously, the sum of all these expectations is finite, which completes the proof.

The next theorem bounds the difference between the distribution of Y conditional on X and finite
approximations of it. Introduce the following notation: For t, k ≥ 0 with t+ k ≤ n let

P(0:n)(Yt = yt, . . . , Yt+k = yt+k |X = x)

:=

k∏
i=1

m(xt+i, yt+i−1, yt+i) lim
n→∞

αt0(x, yt)β
n
t+k(x, yt+k)

αt0(x)Tβnt (x)
.

Accordingly, write E(0:n) for expectations taken with respect to P(0:n). As emphasized by the su-
perscrips, these quantities can be regarded as marginal distributions of Y conditional on the ob-
servations at times t = 0, 1, . . . , n. To simplify notation, the following theorem is stated for
1-dimensional conditional marginal distributions, however, the extension to the general case is
straight-forward.



Theorem 3. Suppose that conditions (A1) - (A4) hold true. Then the limit

P(0:∞)(Yt = i |X) := lim
n→∞

P(0:n)(Yt = i |X)

is well-defined P-almost surely. Moreover, there exists a measurable function C(x) of x ∈ X with
finite expectation, E[|C(X)|] <∞, and a function h(z) satisfying the conditions in (A4) , such that∣∣P(0:∞)(Yt = i |X)− P(0:n)(Yt = i |X)

∣∣ ≤ C(τ tX)h(n− t).

Proof. Define Gn(x) := M(xt+1) . . .M(xn) and write gn(x, i, j) for the (i, j)-th component
of Gn(x). Note that βnt (x) = Gn(x)(1, 1, . . . , 1)T . According to Lemma 3.4 in [6], there exist
numbers rij(x) such that

lim
n→∞

gn(x, i, k)

gn(xj, k)
= rij(x)

for all k ∈ Y . Consequently, the ratio of βnt (x, i) to βnt (x, j) converges to rij(x), and hence

lim
n→∞

αt0(x, i)βnt (x, i)

αt0(x)Tβnt (x)
=

1

qi(x)Tri(x)

where we use the notation qi(x) = αt0(x)/αt0(x, i) and ri(x) denotes the vector with the kth
component rki(x). This proves the first part of the theorem. In order to prove the second part, note
that |x− y| ≤ |x−1 − y−1| for any x, y ∈ (0, 1], and hence∣∣P(0:∞)(Yt = i |X)− P(0:n)(Yt = i |X)

∣∣ ≤ ∣∣∣qi(X)Tri(X) − αt0(X)Tβnt (X)

αt0(X, i)βnt (X, i)

∣∣∣.
To bound the latter expression, introduce the vectors rni (x) and rni (x) with the kth components

rnki(x) = min
l∈Y

(
gn(x, k, l)

gn(x, i, l)

)
and rnki(x) = max

l∈Y

(
gn(x, k, l)

gn(x, i, l)

)
.

It is easy to see that qi(x)Trni (x) ≤ qi(x)Tri(x) ≤ qi(x)Trni (x), and

qi(x)Trni (x) ≤ αt0(x)Tβnt (x)

αt0(x, i)βnt (x, i)
≤ qi(x)Trni (x).

Hence, ∣∣∣qi(X)Tri(X) − αt0(X)Tβnt (X)

αt0(X, i)βnt (X, i)

∣∣∣ ≤ ∣∣qi(X)T (rni (X) − rni (X))
∣∣.

Next, let us establish bounds for |rnki(x) − rnki(x)|. Noting that rnki(x)/rnki(x) ≥ φ(Gn(x)) and
using similar arguments to the proof of Theorem 2, we obtain∣∣rnki(x)− rnki(x)

∣∣ ≤ 4

n−t∏
j=1

(1− φ(M(xt+j))).

With the notation introduced in assumption (A3), let δ > 0 and A ⊂ X with p > 0 be such that
x ∈ A implies φ(M(x)) ≥ δ. Furthermore, let ε be a constant with 0 < ε < p. For x ∈ X define

N(x) := inf
{
N ∈ N : |Sn(x)− p| < ε for all n > N

}
,

with the usual convention that the infimum of the empty set is equal to infinity. Note that sinceX is
ergodic, N(τ tX) is finite P-almost surely. Hence, the following inequality holds for all n:∣∣rnki(X)− rnki(X)

∣∣ ≤ C1(τ tX) (1− δ)(n−t)|p−ε|

where C1(x) := 4(1 − δ)−N(x)|p−ε|. Our next goal is to show that E[|C1(X)|] < ∞. Observe
that P(N(X) = N) ≤ P(|SN (X)− p| ≥ ε) for N > 1. Moreover, according to the concentration
assumption (A3), we have P(|SN (X)− p| ≥ ε) ≤ exp(−γ ε2N). Consequently,

E[|C1(X)|] ≤ 4 (1− δ)−|p−ε| + 4

∞∑
N=1

exp(−γ ε2N)(1− δ)−N |p−ε|.



Now note that the above choice of ε was arbitrary. Choosing ε sufficiently close to p ensures that the
latter sum converges. We have now arrived at the following bound:∣∣P(0:∞)(Yt = i |X)− P(0:n)(Yt = i |X)

∣∣ ≤ |Y|2
(

max
k∈Y

αt0(x, k)

αt0(x, i)

)
C1(τ tX) (1− ζ)n−t

where we choose the constant ζ > 0 such that (1− ζ) ≥ (1− δ)|p−ε|. Next, with the function F (x)
introduced in assumption (A4), define C2(x) := exp(F (x)) for x ∈ X . Note that

max
k∈Y

αt0(x, k)

αt0(x, i)
≤ max

j,k,l,m∈Y

m(xt, j, k)

m(xt, l,m)
≤ C2(xt).

Inserting this into the above inequality we obtain:∣∣P(0:∞)(Yt = i |X)− P(0:n)(Yt = i |X)
∣∣ ≤ |Y|2 C1(τ tX)C2(Xt) (1− ζ)n−t.

Now we construct a function C3(x) satisfying the following conditions: (i) If C2(x)(1 − ζ)k ≥ 1,
then C3(x)h(k) ≥ 1. (ii) If C2(x)(1 − ζ)k < 1, then C3(x)h(k) ≥ C2(x) (1 − ζ)k. Since the
difference between two probabilities cannot exceed 1, this would give us the bound∣∣P(0:∞)(Yt = i |X)− P(0:n)(Yt = i |X)

∣∣ ≤ |Y|2 C1(τ tX)C3(Xt)h(n− t).

In order to construct the function C3(x), let K(x) denote the unique argument k ∈ [0,∞) for which
C2(x)(1 − ζ)k = 1. Note that K(x) = −F (x)/ ln(1 − ζ). In order to ensure that C3(x)h(k) ≥ 1
for k ≤ K(x), we obtain the sufficient condition C3(x) ≥ h(K(x))−1. Furthermore, if (A4) holds,
we may assume without loss of generality that k 7→ h(k) decays slower than k 7→ (1 − ζ)k on
[0,∞). Therefore, in order to ensure that C3(x)h(k) ≥ C2(x)(1 − ζ)k for k ≥ K(x), it suffices
that, in addition to the previous condition, the first derivative of C3(x)h(k) at k = K(x) is larger
than the one of C2(x) (1− ζ)k or, equivalently: C3(x) ≥ ln(1− ζ)h′(K(x))−1. Consequently,

C3(x) := h(K(x))−1 + ln(1− δ)h′(K(x))−1

satisfies (i) and (ii). Note that K(x) = −F (x)/ ln(1− ζ) and, according to (A4), E[h(F (Xt))
−1]

and E[h′(F (Xt))
−1] are both finite. Hence E[|C3(Xt)|] <∞, which completes the proof.

The following result will play a key role in the later analysis of empirical likelihood functions.

Theorem 4. Suppose that conditions (A1) - (A4) hold, and the function g : X × Y → R satisfies
E[|g(Xt, Yt)|] <∞. Then

lim
n→∞

1

n

n∑
t=1

E(0:n)[g(Xt, Yt) |X] = E[g(Xt, Yt)] P-almost surely.

Proof. Without loss of generality we may assume that g can be written as g(x, y) = g(x)1(y = i).
Using the result from Theorem 3, we obtain

1

n

∣∣∣ n∑
t=1

E(0:n)[g(Xt, Yt) |X] −
n∑
t=1

E(0:∞)[g(Xt, Yt) |X]
∣∣∣

≤ 1

n

n∑
t=1

∣∣∣E(0:n)[g(Xt, Yt) |X] − E(0:∞)[g(Xt, Yt) |X]
∣∣∣

=
1

n

n∑
t=1

∣∣∣g(Xt)P(0:n)(Yt = i |X) − g(Xt)P(0:∞)(Yt = i |X)
∣∣∣

≤ 1

n

n∑
t=1

|g(Xt)|
∣∣P(0:n)(Yt = i |X) − P(0:∞)(Yt = i |X)

∣∣
≤ 1

n

n∑
t=1

|g(Xt)| |C(τ tX)|h(n− t),



where h(z) is a function satisfying the conditions in assumption (A4). Using the facts that X is
ergodic and the expectations of |g(Xt)| and |C(τ tX)| are finite, we obtain

lim
n→∞

1

n

∣∣∣ n∑
t=1

E(0:n)[g(Xt, Yt) |X] −
n∑
t=1

E(0:∞)[g(Xt, Yt) |X]
∣∣∣ = 0.

By similar arguments to the proof of the first part of Theorem 3 one can show that the difference
|E(0:∞)[g(Xt, Yt) |X] − E[g(Xt, Yt) |X]| tends to 0 as t→∞. Thus,

lim
n→∞

1

n

∣∣∣ n∑
t=1

E(0:∞)[g(Xt, Yt) |X] −
n∑
t=1

E[g(Xt, Yt) |X]
∣∣∣ = 0.

Now, noting that E[g(Xt, Yt) |X] = E[g(X0, Y0) | τ tX] for every t, the theorem follows by the
ergodicity ofX .

5 Maximum Likelihood learning and model identifiability

In this section we apply the previous results to analyze asymptotic properties of the empirical
likelihood function. The setting is the following: Suppose that we observe finite subsequences
Xn = (X0, . . . , Xn) and Y n = (Y0, . . . , Yn) of X and Y , where the distribution of Y condi-
tional onX follows a conditional Markov chain with fixed feature functions f and unknown model
weights λ∗. We assume that λ∗ lies in some parameter space Θ, the structure of which will be-
come important later. To emphasize the role of the model weights, we will use subscripts, e.g.,
Pλ and Eλ, to denote the conditional distributions. Our goal is to identify the unknown model
weights from the finite samples, Xn and Y n. In order to do so, introduce the shorthand notation
f(xn,yn) =

∑n
t=1 f(xt, yt−1, yt) for xn = (x0, . . . , xn) and yn = (y0, . . . , yn). Consider the

normalized conditional likelihood,

Ln(λ) =
1

n

(
λTf(Xn,Y n)− log

∑
yn∈Yn+1

exp
(
λTf(Xn,yn)

))
.

Note that, in the context of finite Conditional Markov Chains, Ln(λ) is the exact likelihood of Y n

conditional onXn. The Maximum Likelihood estimate of λ∗ is given by

λ̂n := arg max
λ∈Θ

Ln(λ).

If Ln(λ) is strictly concave, then the arg max is unique and can be found using gradient-based
search (see [14]). It is easy to see that Ln(λ) is strictly concave if and only if |Y| > 1, and there
exists a sequence yn such that at least one component of f(Xn,yn) is non-zero. In the following,
we study strong consistency of the Maximum Likelihood estimates, a property which is of central
importance in large sample theory (see [15]). As we will see, a key problem is the identifiability and
uniqueness of the model weights.

5.1 Asymptotic properties of the likelihood function

In addition to the conditions (A1)-(A4) stated earlier, we will make the following assumptions:

(A5) The feature functions have finite second moments: Eλ∗ [|f(Xt, Yt−1, Yt)|2] <∞.
(A6) The parameter space Θ is compact.

The next theorem establishes asymptotic properties of the likelihood function Ln(λ).
Theorem 5. Suppose that conditions (A1)-(A6) are satisfied. Then the following holds true:

(i) There exists a function L(λ) such that limn→∞ Ln(λ) = L(λ) Pλ∗ -almost surely for
every λ ∈ Θ. Moreover, the convergence of Ln(λ) to L(λ) is uniform on Θ, that is,
limn→∞ supλ∈Θ |Ln(λ)− L(λ)| = 0 Pλ∗ -almost surely.

(ii) The gradients satisfy limn→∞∇Ln(λ) = Eλ∗ [f(Xt, Yt−1, Yt)] − Eλ[f(Xt, Yt−1, Yt)]
Pλ∗ -almost surely for every λ ∈ Θ.



(iii) If the limit of the Hessian ∇2Ln(λ) is finite and non-singular, then the function L(λ) is
strictly concave on Θ. As a consequence, the Maximum Likelihood estimates are strongly
consistent:

lim
n→∞

λ̂n = λ∗ Pλ∗ -almost surely.

Proof. The statements are obtained analogously to Lemma 4-6 and Theorem 4 in [1], using the
auxiliary results for Conditional Markov Chains with unbounded feature functions established in
Theorem 1, Theorem 2, and Theorem 4.

Next, we study the asymptotic behaviour of the Hessian ∇2Ln(λ). In order to compute the dervia-
tives, introduce the vectors λ1, . . . , λn with λt = λ for t = 1, . . . , n. This allows us to write
λTf(Xn,Y n) =

∑n
t=1 λ

T
t f(Xt, Yt−1, Yt). Now, regard the argument λ of the likelihood func-

tion as a stacked vector (λ1, . . . ,λn). Same as in [1], this gives us the expressions

∂2

∂λt∂λ
T
t+k

Ln(λ) =
1

n
Cov(0:n)λ

[
f(Xt, Yt−1, Yt), f(Xt+k, Yt+k−1, Yt+k)T |X

]
where Cov(0:n)λ is the covariance with respect to the measure P(0:n)

λ introduced before Theorem 3.
Using these expressions, the Hessian of Ln(λ) can be written as

∇2Ln(λ) = −
( n∑
t=1

∂2

∂λt∂λ
T
t

Ln(λ) + 2

n−1∑
k=1

n−k∑
t=1

∂2

∂λt∂λ
T
t+k

Ln(λ)
)
.

The following theorem establishes an expression for the limit of∇2Ln(λ). It corrects the expression
given in Lemma 7 of [1], which is incorrect.

Theorem 6. Suppose that conditions (A1) - (A5) hold. Then

lim
n→∞

∇2Ln(λ) = −
(
γλ(0) + 2

∞∑
k=1

γλ(k)
)

Pλ∗ -almost surely

where γλ(k) = E[Covλ(f(Xt, Yt−1, Yt), f(Xt+k, Yt+k−1, Yt+k) |X)] is the expectation of the
conditional covariance (with respect to Pλ) between f(Xt, Yt−1, Yt) and f(Xt+k, Yt+k−1, Yt+k)
givenX . In particular, the limit of∇2Ln(λ) is finite.

Proof. The key step is to show the existence of a positive measurable function Uλ(k,x) such that

lim
n→∞

n−1∑
k=1

n−k∑
t=1

∣∣∣ ∂2

∂λt∂λ
T
t+k

Ln(λ)
∣∣∣ ≤ lim

n→∞

n−1∑
k=1

E[Uλ(k,X)]

with the limit on the right hand side being finite. Then the rest of the proof is straight-forward:
Theorem 4 shows that, for fixed k ≥ 0,

lim
n→∞

n−k∑
t=1

∂2

∂λt∂λ
T
t+k

Ln(λ) = γλ(k) Pλ∗ -almost surely.

Hence, in order to establish the theorem, it suffices to show that

lim
n→∞

n−1∑
k=1

∣∣∣γλ(k) −
n−k∑
t=1

∂2

∂λt∂λ
T
t+k

Ln(λ)
∣∣∣ ≤ ε

for all ε > 0. Now let ε > 0 be fixed. According to Theorem 2 we have
∑∞
k=1 |γλ(k)| <∞. Hence

we can find a finite N such that

lim
n→∞

n−1∑
k=N

|γλ(k)| + lim
n→∞

n−1∑
k=N

E[Uλ(k,X)] ≤ ε.



On the other hand, Theorem 4 shows that

lim
n→∞

N−1∑
k=1

∣∣∣γλ(k) −
n−k∑
t=1

∂2

∂λt∂λ
T
t+k

Ln(λ)
∣∣∣ = 0.

In order to construct Uλ(k,x), note that |Cov(0:n)(g(Xt, Yt), g(Xt+k, Yt+k) |X)| has the same up-
per bound as |Cov(g(Xt, Yt), g(Xt+k, Yt+k) |X)| in the proof of Theorem 2. In the same way, we
obtain an integrable upper bound for the absolute value of the covariance between f(Xt, Yt−1, Yt)
and f(Xt+k, Yt+k−1, Yt+k), which we denote by Uλ(k, τ tX). It only remains to show that

lim
n→∞

1

n

n−1∑
k=1

n−k∑
t=1

Uλ(k, τ tX) = lim
n→∞

n−1∑
k=1

E[Uλ(k,X)].

Considering double limits, and using the ergodicity of X and the Monotone Convergence theorem
establishes this claim. The proof is complete.

5.2 Model identifiability

Let us conclude the analysis by investigating conditions under which the limit of the Hessian
∇2Ln(λ) is non-singular. Note that ∇2Ln(λ) is negative definite for every n, so also the limit
is negative definite, but not necessarily strictly negative definite. Using the result in Theorem 6, we
can establish the following statement:
Corollary 2. Suppose that assumptions (A1)-(A5) hold true. Then the following conditions are
necessary for the limit of∇2Ln(λ) to be non-singular:

(i) For each feature function f(x, i, j), there exists a set A ⊂ X with P(Xt ∈ A) > 0 such
that, for every x ∈ A, we can find i, j, k, l ∈ Y with f(x, i, j) 6= f(x, k, l).

(ii) There does not exist a non-zero vector λ and a subset A ⊂ X with P(Xt ∈ A) = 1 such
that λTf(x, i, j) is constant for all x ∈ X and i, j ∈ Y .

Condition (i) essentially says: features f(x, i, j) must not be constant in i and j. Condition (ii)
says that features must not be expressible as linear combinations of each other. Clearly, features
violating condition (i) can be assigned arbitrary model weights without any effect on the conditional
distributions. If condition (ii) is violated, then there are infinitely many ways for parameterizing the
same model. In practice, some authors have found positive effects of including redundant features
(see, e.g., [16]), however, usually in the context of a learning objective with an additional penalizer.

6 Conclusions

We have established ergodicity and various mixing properties of Conditional Markov Chains with
unbounded feature functions. The main insight is that similar results to the setting with bounded
feature functions can be obtained, however, under additional assumptions on the distribution of the
observations. In particular, the proof of Theorem 2 has shown that the sequence of observations
needs to satisfy conditions under which Hoeffding-type concentration inequalities can be obtained.
The proof of Theorem 3 has reveiled an interesting interplay between mixing properties, feature
functions, and the tail behaviour of the distribution of observations. By applying the mixing proper-
ties to the empirical likelihood functions we have obtained necessary conditions for the Maximum
Likelihood estimates to be strongly consistent. We see a couple of interesting problems for future
research: establishing Central Limit Theorems for Conditional Markov Chains; deriving bounds for
the asymptotic variance of Maximum Likelihood estimates; constructing tests for the significance
of features; generalizing the estimation theory to an infinite number of features; finally, finding
sufficient conditions for the model identifiability.
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