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Abstract

Recent experiments have demonstrated that humans and animals typically rea-
son probabilistically about their environment. This ability requires a neural code
that represents probability distributions and neural circuits that are capable of
implementing the operations of probabilistic inference. The proposed probabilis-
tic population coding (PPC) framework provides a statistically efficient neural
representation of probability distributions that is both broadly consistent with
physiological measurements and capable of implementing some of the basic oper-
ations of probabilistic inference in a biologically plausible way. However, these
experiments and the corresponding neural models have largely focused on simple
(tractable) probabilistic computations such as cue combination, coordinate transfor-
mations, and decision making. As a result it remains unclear how to generalize this
framework to more complex probabilistic computations. Here we address this short
coming by showing that a very general approximate inference algorithm known
as Variational Bayesian Expectation Maximization can be naturally implemented
within the linear PPC framework. We apply this approach to a generic problem
faced by any given layer of cortex, namely the identification of latent causes of
complex mixtures of spikes. We identify a formal equivalent between this spike
pattern demixing problem and topic models used for document classification, in
particular Latent Dirichlet Allocation (LDA). We then construct a neural network
implementation of variational inference and learning for LDA that utilizes a linear
PPC. This network relies critically on two non-linear operations: divisive normal-
ization and super-linear facilitation, both of which are ubiquitously observed in
neural circuits. We also demonstrate how online learning can be achieved using a
variation of Hebb’s rule and describe an extension of this work which allows us to
deal with time varying and correlated latent causes.

1 Introduction to Probabilistic Inference in Cortex

Probabilistic (Bayesian) reasoning provides a coherent and, in many ways, optimal framework for
dealing with complex problems in an uncertain world. It is, therefore, somewhat reassuring that
behavioural experiments reliably demonstrate that humans and animals behave in a manner consistent
with optimal probabilistic reasoning when performing a wide variety of perceptual [1, 2, 3], motor
[4, 5, 6], and cognitive tasks[7]. This remarkable ability requires a neural code that represents
probability distribution functions of task relevant stimuli rather than just single values. While there
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are many ways to represent functions, Bayes rule tells us that when it comes to probability distribution
functions, there is only one statistically optimal way to do it. More precisely, Bayes Rule states
that any pattern of activity, r, that efficiently represents a probability distribution over some task
relevant quantity s, must satisfy the relationship p(s|r) ∝ p(r|s)p(s), where p(r|s) is the stimulus
conditioned likelihood function that specifies the form of neural variability, p(s) gives the prior belief
regarding the stimulus, and p(s|r) gives the posterior distribution over values of the stimulus, s given
the representation r . Of course, it is unlikely that the nervous system consistently achieves this level
of optimality. None-the-less, Bayes rule suggests the existence of a link between neural variability as
characterized by the likelihood function p(r|s) and the state of belief of a mature statistical learning
machine such as the brain.

The so called Probabilistic Population Coding (or PPC) framework[8, 9, 10] takes this link seriously
by proposing that the function encoded by a pattern of neural activity r is, in fact, the likelihood
function p(r|s). When this is the case, the precise form of the neural variability informs the nature
of the neural code. For example, the exponential family of statistical models with linear sufficient
statistics has been shown to be flexible enough to model the first and second order statistics of in vivo
recordings in awake behaving monkeys[9, 11, 12] and anesthetized cats[13]. When the likelihood
function is modeled in this way, the log posterior probability over the stimulus is linearly encoded by
neural activity, i.e.

log p(s|r) = h(s) · r− logZ(r) (1)

Here, the stimulus dependent kernel, h(s), is a vector of functions of s, the dot represents a standard
dot product, and Z(r) is the partition function which serves to normalize the posterior. This log
linear form for a posterior distribution is highly computationally convenient and allows for evidence
integration to be implemented via linear operations on neural activity[14, 8].

Proponents of this kind of linear PPC have demonstrated how to build biologically plausible neu-
ral networks capable of implementing the operations of probabilistic inference that are needed to
optimally perform the behavioural tasks listed above. This includes, linear PPC implementations
of cue combination[8], evidence integration over time, maximum likelihood and maximum a pos-
terior estimation[9], coordinate transformation/auditory localization[10], object tracking/Kalman
filtering[10], explaining away[10], and visual search[15]. Moreover, each of these neural computa-
tions has required only a single recurrently connected layer of neurons that is capable of just two
non-linear operations: coincidence detection and divisive normalization, both of which are widely
observed in cortex[16, 17].

Unfortunately, this research program has been a piecemeal effort that has largely proceeded by
building neural networks designed deal with particular problems. As a result, there have been no
proposals for a general principle by which neural network implementations of linear PPCs might
be generated and no suggestions regarding how to deal with complex (intractable) problems of
probabilistic inference.

In this work, we will partially address this short coming by showing that Variation Bayesian Expec-
tation Maximization (VBEM) algorithm provides a general scheme for approximate inference and
learning with linear PPCs. In section 2, we briefly review the VBEM algorithm and show how it
naturally leads to a linear PPC representation of the posterior as well as constraints on the neural
network dynamics which build that PPC representation. Because this section describes the VB-PPC
approach rather abstractly, the remainder of the paper is dedicated to concrete applications. As a
motivating example, we consider the problem of inferring the concentrations of odors in an olfactory
scene from a complex pattern of spikes in a population of olfactory receptor neurons (ORNs). In
section 3, we argue that this requires solving a spike pattern demixing problem which is indicative of
the generic problem faced by many layers of cortex. We then show that this demixing problem is
equivalent to the problem addressed by a class of models for text documents know as probabilistic
topic models, in particular Latent Dirichlet Allocation or LDA[18].

In section 4, we apply the VB-PPC approach to build a neural network implementation of probabilistic
inference and learning for LDA. This derivation shows that causal inference with linear PPC’s also
critically relies on divisive normalization. This result suggests that this particular non-linearity may
be involved in very general and fundamental probabilistic computation, rather than simply playing a
role in gain modulation. In this section, we also show how this formulation allows for a probabilistic
treatment of learning and show that a simple variation of Hebb’s rule can implement Bayesian
learning in neural circuits.
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We conclude this work by generalizing this approach to time varying inputs by introducing the
Dynamic Document Model (DDM) which can infer short term fluctuations in the concentrations of
individual topics/odors and can be used to model foraging and other tracking tasks.

2 Variational Bayesian Inference with linear Probabilistic Population Codes

Variational Bayesian (VB) inference refers to a class of deterministic methods for approximating the
intractable integrals which arise in the context of probabilistic reasoning. Properly implemented it
can result a fast alternative to sampling based methods of inference such as MCMC[19] sampling.
Generically, the goal of any Bayesian inference algorithm is to infer a posterior distribution over
behaviourally relevant latent variables Z given observations X and a generative model which specifies
the joint distribution p(X,Θ,Z). This task is confounded by the fact that the generative model
includes latent parameters Θ which must be marginalized out, i.e. we wish to compute,

p(Z|X) ∝
∫
p(X,Θ,Z)dΘ (2)

When the number of latent parameters is large this integral can be quite unwieldy. The VB algorithms
simplify this marginalization by approximating the complex joint distribution over behaviourally
relevant latents and parameters, p(Θ,Z|X), with a distribution q(Θ,Z) for which integrals of this
form are easier to deal with in some sense. There is some art to choosing the particular form for the
approximating distribution to make the above integral tractable, however, a factorized approximation
is common, i.e. q(Θ,Z) = qΘ(Θ)qZ(Z).

Regardless, for any given observation X, the approximate posterior is found by minimizing the
Kullback-Leibler divergence between q(Θ,Z) and p(Θ,Z|X). When a factorized posterior is
assumed, the Variational Bayesian Expectation Maximization (VBEM) algorithm finds a local
minimum of the KL divergence by iteratively updating, qΘ(Θ) and qZ(Z) according to the scheme

log qnΘ(Θ) ∼ 〈log p(X,Θ,Z)〉qnZ(Z) and log qn+1
Z (Z) ∼ 〈log p(X,Θ,Z)〉qnΘ(Θ) (3)

Here the brackets indicate an expected value taken with respect to the subscripted probability
distribution function and the tilde indicates equality up to a constant which is independent of Θ and Z.
The key property to note here is that the approximate posterior which results from this procedure is in
an exponential family form and is therefore representable by a linear PPC (Eq. 1). This feature allows
for the straightforward construction of networks which implement the VBEM algorithm with linear
PPC’s in the following way. If rnΘ and rnZ are patterns of activity that use a linear PPC representation
of the relevant posteriors, then

log qnΘ(Θ) ∼ hΘ(Θ) · rnΘ and log qn+1
Z (Z) ∼ hZ(Z) · rn+1

Z . (4)

Here the stimulus dependent kernels hZ(Z) and hΘ(Θ) are chosen so that their outer product results
in a basis that spans the function space on Z×Θ given by log p(X,Θ,Z) for every X. This choice
guarantees that there exist functions fΘ(X, rnZ) and fZ(X, rnΘ) such that

rnΘ = fΘ(X, rnZ) and rn+1
Z = fZ(X, rnΘ) (5)

satisfy Eq. 3. When this is the case, simply iterating the discrete dynamical system described by Eq.
5 until convergence will find the VBEM approximation to the posterior. This is one way to build a
neural network implementation of the VB algorithm. However, its not the only way. In general, any
dynamical system which has stable fixed points in common with Eq. 5 can also be said to implement
the VBEM algorithm. In the example below we will take advantage of this flexibility in order to build
biologically plausible neural network implementations.
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Figure 1: (Left) Each cause (e.g. coffee) in isolation results in a pattern of neural activity (top). When
multiple causes contribute to a scene this results in an overall pattern of neural activity which is a
mixture of these patterns weighted by the intensities (bottom). (Right) The resulting pattern can be
represented by a raster, where each spike is colored by its corresponding latent cause.

3 Probabilistic Topic Models for Spike Train Demixing

Consider the problem of odor identification depicted in Fig. 1. A typical mammalian olfactory
system consists of a few hundred different types of olfactory receptor neurons (ORNs), each of which
responds to a wide range of volatile chemicals. This results in a highly distributed code for each
odor. Since, a typical olfactory scene consists of many different odors at different concentrations, the
pattern of ORN spike trains represents a complex mixture. Described in this way, it is easy to see that
the problem faced by early olfactory cortex can be described as the task of demixing spike trains to
infer latent causes (odor intensities).

In many ways this olfactory problem is a generic problem faced by each cortical layer as it tries to
make sense of the activity of the neurons in the layer below. The input patterns of activity consist of
spikes (or spike counts) labeled by the axons which deliver them and summarized by a histogram
which indicates how many spikes come from each input neuron. Of course, just because a spike came
from a particular neuron does not mean that it had a particular cause, just as any particular ORN
spike could have been caused by any one of a large number of volatile chemicals. Like olfactory
codes, cortical codes are often distributed and multiple latent causes can be present at the same time.

Regardless, this spike or histogram demixing problem is formally equivalent to a class of demixing
problems which arise in the context of probabilistic topic models used for document modeling. A
simple but successful example of this kind of topic model is called Latent Dirichlet Allocation (LDA)
[18]. LDA assumes that word order in documents is irrelevant and, therefore, models documents
as histograms of word counts. It also assumes that there are K topics and that each of these topics
appears in different proportions in each document, e.g. 80% of the words in a document might be
concerned with coffee and 20% with strawberries. Words from a given topic are themselves drawn
from a distribution over words associated with that topic, e.g. when talking about coffee you have a
5% chance of using the word ’bitter’. The goal of LDA is to infer both the distribution over topics
discussed in each document and the distribution of words associated with each topic. We can map
the generative model for LDA onto the task of spike demixing in cortex by letting topics become
latent causes or odors, words become neurons, word occurrences become spikes, word distributions
associated with each topic become patterns of neural activity associated with each cause, and different
documents become the observed patterns of neural activity on different trials. This equivalence is
made explicit in Fig. 2 which describes the standard generative model for LDA applied to documents
on the left and mixtures of spikes on the right.

4 LDA Inference and Network Implementation

In this section we will apply the VB-PPC formulation to build a biologically plausible network
capable of approximating probabilistic inference for spike pattern demixing. For simplicity, we will
use the equivalent Gamma-Poisson formulation of LDA which directly models word and topic counts
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1. For each topic k = 1, . . . ,K,
(a) Distribution over words

βk ∼ Dirichlet(η0)

2. For document d = 1, . . . , D,
(a) Distribution over topics

θd ∼ Dirichlet(α0)
(b) For word m = 1, . . . ,Ωd

i. Topic assignment
zd,m ∼Multinomial(θd)

ii. Word assignment
ωd,m ∼Multinomial(βzm)

1. For latent cause k = 1, . . . ,K,
(a) Pattern of neural activity

βk ∼ Dirichlet(η0)

2. For scene d = 1, . . . , D,
(a) Relative intensity of each cause

θd ∼ Dirichlet(α0)
(b) For spike m = 1, . . . ,Ωd

i. Cause assignment
zd,m ∼Multinomial(θd)

ii. Neuron assignment
ωd,m ∼Multinomial(βzm)

Figure 2: (Left) The LDA generative model in the context of document modeling. (Right) The
corresponding LDA generative model mapped onto the problem of spike demixing. Text related
attributes on the left, in red, have been replaced with neural attributes on the right, in green.

rather than topic assignments. Specifically, we define, Rd,j to be the number of times neuron j fires
during trial d. Similarly, we let Nd,j,k to be the number of times a spike in neuron j comes from
cause k in trial d. These new variables play the roles of the cause and neuron assignment variables,
zd,m and ωd,m by simply counting them up. If we let cd,k be an un-normalized intensity of cause j
such that θd,k = cd,k/

∑
k cd,k then the generative model,

Rd,j =
∑
kNd,j,k Nd,j,k ∼ Poisson(βj,kcd,k) cd,k ∼ Gamma(α0

k, C
−1). (6)

is equivalent to the topic models described above. Here the parameter C is a scale parameter
which sets the expected total number of spikes from the population on each trial. Note that, the
problem of inferring the wj,k and cd,k is a non-negative matrix factorization problem similar to
that considered by Lee and Seung[20]. The primary difference is that, here, we are attempting to
infer a probability distribution over these quantities rather than maximum likelihood estimates. See
supplement for details. Following the prescription laid out in section 2, we approximate the posterior
over latent variables given a set of input patterns, Rd, d = 1, . . . , D, with a factorized distribu-
tion of the form, qN(N)qc(c)qβ(β). This results in marginal posterior distributions q (β:,k|η:,k),
q
(
cd,k|αd,k, C−1 + 1

)
), and q (Nd,j,:| log pd,j,:, Rd,i) which are Dirichlet, Gamma, and Multino-

mial respectively. Here, the parameters η:,k, αd,k, and log pd,j,: are the natural parameters of these
distributions. The VBEM update algorithm yields update rules for these parameters which are
summarized in Fig. 3 Algorithm1.

Algorithm 1: Batch VB updates
1: while ηj,k not converged do
2: for d = 1, · · · , D do
3: while pd,j,k, αd,k not converged do
4: αd,k → α0 +

∑
j Rd,jpd,j,k

5: pd,j,k →
exp (ψ(ηj,k)−ψ(η̄k)) expψ(αd,k)∑
i exp (ψ(ηj,i)−ψ(η̄i)) expψ(αd,i)

6: end while
7: end for
8: ηj,k = η0 +

∑
dRd,jpd,j,k

9: end while

Algorithm 2: Online VB updates
1: for d = 1, · · · , D do
2: reinitialize pj,k, αk ∀j, k
3: while pj,k, αk not converged do
4: αk → α0 +

∑
j Rd,jpj,k

5: pj,k →
exp (ψ(ηj,k)−ψ(η̄k)) expψ(αk)∑
i exp (ψ(ηj,i)−ψ(η̄i)) expψ(αi)

6: end while
7: ηj,k →

(1− dt)ηj,k + dt(η0 +Rd,jpj,k)
8: end for

Figure 3: Here η̄k =
∑
j ηj,k and ψ(x) is the digamma function so that expψ(x) is a smoothed

threshold linear function.

Before we move on to the neural network implementation, note that this standard formulation of
variational inference for LDA utilizes a batch learning scheme that is not biologically plausible.
Fortunately, an online version of this variational algorithm was recently proposed and shown to give
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superior results when compared to the batch learning algorithm[21]. This algorithm replaces the
sum over d in update equation for ηj,k with an incremental update based upon only the most recently
observed pattern of spikes. See Fig. 3 Algorithm 2.

4.1 Neural Network Implementation

Recall that the goal was to build a neural network that implements the VBEM algorithm for the
underlying latent causes of a mixture of spikes using a neural code that represents the posterior
distribution via a linear PPC. A linear PPC represents the natural parameters of a posterior distribution
via a linear operation on neural activity. Since the primary quantity of interest here is the posterior
distribution over odor concentrations, qc(c|α), this means that we need a pattern of activity rα which
is linearly related to the αk’s in the equations above. One way to accomplish this is to simply assume
that the firing rates of output neurons are equal to the positive valued αk parameters.

Fig. 4 depicts the overall network architecture. Input patterns of activity, R, are transmitted to the
synapses of a population of output neurons which represent the αk’s. The output activity is pooled to
form an un-normalized prediction of the activity of each input neuron, R̄j , given the output layer’s
current state of belief about the latent causes of the Rj . The activity at each synapse targeted by input
neuron j is then inhibited divisively by this prediction. This results in a dendrite that reports to the
soma a quantity, N̄j,k, which represents the fraction of unexplained spikes from input neuron j that
could be explained by latent cause k. A continuous time dynamical system with this feature and the
property that it shares its fixed points with the LDA algorithm is given by

d

dt
N̄j,k = wj,kRj − R̄jN̄j,k (7)

d

dt
αk = exp (ψ (η̄k)) (α0 − αk) + exp (ψ (αk))

∑
i

N̄j,k (8)

where R̄j =
∑
k wj,k exp (ψ (αk)), and wj,k = exp (ψ (ηj,k)). Note that, despite its form, it is

Eq. 7 which implements the required divisive normalization operation since, in the steady state,
N̄j,k = wj,kRj/R̄j .

Regardless, this network has a variety of interesting properties that align well with biology. It predicts
that a balance of excitation and inhibition is maintained in the dendrites via divisive normalization
and that the role of inhibitory neurons is to predict the input spikes which target individual dendrites.
It also predicts superlinear facilitation. Specifically, the final term on the right of Eq. 8 indicates
that more active cells will be more sensitive to their dendritic inputs. Alternatively, this could be
implemented via recurrent excitation at the population level. In either case, this is the mechanism by
which the network implements a sparse prior on topic concentrations and stands in stark contrast to the
winner take all mechanisms which rely on competitive mutual inhibition mechanisms. Additionally,
the η̄j in Eq. 8 represents a cell wide ’leak’ parameter that indicates that the total leak should be
roughly proportional to the sum total weight of the synapses which drive the neuron. This predicts
that cells that are highly sensitive to input should also decay back to baseline more quickly. This
implementation also predicts Hebbian learning of synaptic weights. To observe this fact, note that the
online update rule for the ηj,k parameters can be implemented by simply correlating the activity at
each synapse, N̄j,k with activity at the soma αj via the equation:

τL
d

dt
wj,k = exp (ψ (η̄k)) (η0 − 1/2− wj,k) + N̄j,k expψ (αk) (9)

where τL is a long time constant for learning and we have used the fact that exp (ψ (ηjk)) ≈ ηjk−1/2
for x > 1. For a detailed derivation see the supplementary material.

5 Dynamic Document Model

LDA is a rather simple generative model that makes several unrealistic assumptions about mixtures
of sensory and cortical spikes. In particular, it assumes both that there are no correlations between the
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Figure 4: The LDA network model. Den-
dritically targeted inhibition is pooled
from the activity of all neurons in the
output layer and acts divisively.
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Figure 5: DDM network model also includes recur-
rent connections which target the soma with both
a linear excitatory signal and an inhibitory signal
that also takes the form of a divisive normalization.

intensities of latent causes and that there are no correlations between the intensities of latent causes
in temporally adjacent trials or scenes. This makes LDA a rather poor computational model for a
task like olfactory foraging which requires the animal to track the rise a fall of odor intensities as it
navigates its environment. We can model this more complicated task by replacing the static cause or
odor intensity parameters with dynamic odor intensity parameters whose behavior is governed by an
exponentiated Ornstein-Uhlenbeck process with drift and diffusion matrices given by (Λ and ΣD).
We call this variant of LDA the Dynamic Document Model (DDM) as it could be used to model
smooth changes in the distribution of topics over the course of a single document.

5.1 DDM Model

Thus the generative model for the DDM is as follows:
1. For latent cause k = 1, . . . ,K,

(a) Cause distribution over spikes βk ∼ Dirichlet(η0)
2. For scene t = 1, . . . , T ,

(a) Log intensity of causes c(t) ∼ Normal(Λct−1,ΣD)
(b) Number of spikes in neuron j resulting from cause k,

Nj,k(t) ∼ Poisson(βj,k exp ck(t))
(c) Number of spikes in neuron j, Rj(t) =

∑
kNj,k(t)

This model bears many similarities to the Correlated and Dynamic topic models[22], but models
dynamics over a short time scale, where the dynamic relationship (Λ,ΣD) is important.

5.2 Network Implementation

Once again the quantity of interest is the current distribution of latent causes, p(c(t)|R(τ), τ = 0..T ).
If no spikes occur then no evidence is presented and posterior inference over c(t) is simply given
by an undriven Kalman filter with parameters (Λ,ΣD). A recurrent neural network which uses a
linear PPC to encode a posterior that evolves according to a Kalman filter has the property that neural
responses are linearly related to the inverse covariance matrix of the posterior as well as that inverse
covariance matrix times the posterior mean. In the absence of evidence, it is easy to show that these
quantities must evolve according to recurrent dynamics which implement divisive normalization[10].
Thus, the patterns of neural activity which linearly encode them must do so as well. When a new spike
arrives, optimal inference is no longer possible and a variational approximation must be utilized. As
is shown in the supplement, this variational approximation is similar to the variational approximation
used for LDA. As a result, a network which can divisively inhibit its synapses is able to implement
approximate Bayesian inference. Curiously, this implies that the addition of spatial and temporal
correlations to the latent causes adds very little complexity to the VB-PPC network implementation
of probabilistic inference. All that is required is an additional inhibitory population which targets the
somata in the output population. See Fig. 5.
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Figure 6: (Left) Neural network approximation to the natural parameters of the posterior distribution
over topics (the α’s) as a function of the VBEM estimate of those same parameters for a variety of
’documents’. (Center) Same as left, but for the natural parameters of the DDM (i.e the entries of the
matrix Σ−1(t) and Σ−1µ(t) of the distribution over log topic intensities. (Right) Three example
traces for cause intensity in the DDM. Black shows true concentration, blue and red (indistinguishable)
show MAP estimates for the network and VBEM algorithms.

6 Experimental Results

We compared the PPC neural network implementations of the variational inference with the standard
VBEM algorithm. This comparison is necessary because the two algorithms are not guaranteed
to converge to the same solution due to the fact that we only required that the neural network
dynamics have the same fixed points as the standard VBEM algorithm. As a result, it is possible
for the two algorithms to converge to different local minima of the KL divergence. For the network
implementation of LDA we find good agreement between the neural network and VBEM estimates
of the natural parameters of the posterior. See Fig. 6(left) which shows the two algorithms estimates
of the shape parameter of the posterior distribution over topic (odor) concentrations (a quantity which
is proportional to the expected concentration). This agreement, however, is not perfect, especially
when posterior predicted concentrations are low. In part, this is due to the fact we are presenting the
network with difficult inference problems for which the true posterior distribution over topics (odors)
is highly correlated and multimodal. As a result, the objective function (KL divergence) is littered
with local minima. Additionally, the discrete iterations of the VBEM algorithm can take very large
steps in the space of natural parameters while the neural network implementation cannot. In contrast,
the network implementation of the DDM is in much better agreement with the VBEM estimation.
See Fig. 6(right). This is because the smooth temporal dynamics of the topics eliminate the need for
the VBEM algorithm to take large steps. As a result, the smooth network dynamics are better able to
accurately track the VBEM algorithms output. For simulation details please see the supplement.

7 Discussion and Conclusion

In this work we presented a general framework for inference and learning with linear Probabilistic
Population codes. This framework takes advantage of the fact that the Variational Bayesian Ex-
pectation Maximization algorithm generates approximate posterior distributions which are in an
exponential family form. This is precisely the form needed in order to make probability distributions
representable by a linear PPC. We then outlined a general means by which one can build a neural
network implementation of the VB algorithm using this kind of neural code. We applied this VB-PPC
framework to generate a biologically plausible neural network for spike train demixing. We chose
this problem because it has many of the features of the canonical problem faced by nearly every
layer of cortex, i.e. that of inferring the latent causes of complex mixtures of spike trains in the layer
below. Curiously, this very complicated problem of probabilistic inference and learning ended up
having a remarkably simple network solution, requiring only that neurons be capable of implementing
divisive normalization via dendritically targeted inhibition and superlinear facilitation. Moreover,
we showed that extending this approach to the more complex dynamic case in which latent causes
change in intensity over time does not substantially increase the complexity of the neural circuit.
Finally, we would like to note that, while we utilized a rate coding scheme for our linear PPC, the
basic equations would still apply to any spike based log probability codes such as that considered
Beorlin and Deneve[23].
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