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Abstract

We study the problem of estimating a manifold from random samples. In partic-
ular, we consider piecewise constant and piecewise linear estimators induced by
k-means and k-flats, and analyze their performance. We extend previous results
for k-means in two separate directions. First, we provide new results for k-means
reconstruction on manifolds and, secondly, we prove reconstruction bounds for
higher-order approximation (k-flats), for which no known results were previously
available. While the results for k-means are novel, some of the technical tools are
well-established in the literature. In the case of k-flats, both the results and the
mathematical tools are new.

1 Introduction

Our study is broadly motivated by questions in high-dimensional learning. As is well known, learn-
ing in high dimensions is feasible only if the data distribution satisfies suitable prior assumptions.
One such assumption is that the data distribution lies on, or is close to, a low-dimensional set embed-
ded in a high dimensional space, for instance a low dimensional manifold. This latter assumption
has proved to be useful in practice, as well as amenable to theoretical analysis, and it has led to
a significant amount of recent work. Starting from [23, 34, 5], this set of ideas, broadly referred
to as manifold learning, has been applied to a variety of problems from supervised [35] and semi-
supervised learning [6], to clustering [37] and dimensionality reduction [5], to name a few.

Interestingly, the problem of learning the manifold itself has received less attention: given samples
from a d-manifoldM embedded in some ambient space X , the problem is to learn a set that approx-
imates M in a suitable sense. This problem has been considered in computational geometry, but in
a setting in which typically the manifold is a hyper-surface in a low-dimensional space (e.g. R3),
and the data are typically not sampled probabilistically, see for instance [26, 24]. The problem of
learning a manifold is also related to that of estimating the support of a distribution, (see [13, 14] for
recent surveys.) In this context, some of the distances considered to measure approximation quality
are the Hausforff distance, and the so-called excess mass distance.

The reconstruction framework that we consider is related to the work of [1, 32], as well as to the
framework proposed in [30], in which a manifold is approximated by a set, with performance mea-
sured by an expected distance to this set. This setting is similar to the problem of dictionary learning
(see for instance [29], and extensive references therein), in which a dictionary is found by minimiz-
ing a similar reconstruction error, perhaps with additional constraints on an associated encoding of
the data. Crucially, while the dictionary is learned on the empirical data, the quantity of interest is
the expected reconstruction error, which is the focus of this work.

We analyze this problem by focusing on two important, and widely-used algorithms, namely k-
means and k-flats. The k-means algorithm can be seen to define a piecewise constant approximation
ofM. Indeed, it induces a Voronoi decomposition onM, in which each Voronoi region is effectively
approximated by a fixed mean. Given this, a natural extension is to consider higher order approxima-
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tions, such as those induced by discrete collections of k d-dimensional affine spaces (k-flats), with
possibly better resulting performance. Since M is a d-manifold, the k-flats approximation naturally
resembles the way in which a manifold is locally approximated by its tangent bundle.

Our analysis extends previous results for k-means to the case in which the data-generating distribu-
tion is supported on a manifold, and provides analogous results for k-flats. We note that the k-means
algorithm has been widely studied, and thus much of our analysis in this case involves the combi-
nation of known facts to obtain novel results. The analysis of k-flats, however, requires developing
substantially new mathematical tools.

The rest of the paper is organized as follows. In section 2, we describe the formal setting and
the algorithms that we study. We begin our analysis by discussing the reconstruction properties
of k-means in section 3. In section 4, we present and discuss our main results, whose proofs are
postponed to the appendices.

2 Learning Manifolds

Let X by a Hilbert space with inner product 〈·, ·〉, endowed with a Borel probability measure ρ
supported over a compact, smooth d-manifold M. We assume the data to be given by a training set,
in the form of samples Xn = (x1, . . . , xn) drawn identically and independently with respect to ρ.
Our goal is to learn a set Sn that approximates well the manifold. The approximation (learning
error) is measured by the expected reconstruction error

Eρ(Sn) :=
∫
M

dρ(x) d2
X

(x, Sn), (1)

where the distance to a set S ⊆ X is d2
X

(x, S) = infx′∈S d2
X

(x, x′), with dX (x, x′) = ‖x− x′‖.
This is the same reconstruction measure that has been the recent focus of [30, 4, 32].

It is easy to see that any set such that S ⊃M will have zero risk, with M being the “smallest” such
set (with respect to set containment.) In other words, the above error measure does not introduce an
explicit penalty on the “size” of Sn: enlarging any given Sn can never increase the learning error.
With this observation in mind, we study specific learning algorithms that, given the data, produce
a set belonging to some restricted hypothesis space H (e.g. sets of size k for k-means), which
effectively introduces a constraint on the size of the sets. Finally, note that the risk of Equation 1 is
non-negative and, if the hypothesis space is sufficiently rich, the risk of an unsupervised algorithm
may converge to zero under suitable conditions.

2.1 Using K-Means and K-Flats for Piecewise Manifold Approximation

In this work, we focus on two specific algorithms, namely k-means [28, 27] and k-flats [9]. Although
typically discussed in the Euclidean space case, their definition can be easily extended to a Hilbert
space setting. The study of manifolds embedded in a Hilbert space is of special interest when
considering non-linear (kernel) versions of the algorithms [15]. More generally, this setting can be
seen as a limit case when dealing with high dimensional data. Naturally, the more classical setting
of an absolutely continuous distribution over d-dimensional Euclidean space is simply a particular
case, in which X = Rd, and M is a domain with positive Lebesgue measure.

K-Means. Let H = Sk be the class of sets of size k in X . Given a training set Xn and a choice of
k, k-means is defined by the minimization over S ∈ Sk of the empirical reconstruction error

En(S) :=
1
n

n∑
i=1

d2
X

(xi, S). (2)

where, for any fixed set S, En(S) is an unbiased empirical estimate of Eρ(S), so that k-means can
be seen to be performing a kind of empirical risk minimization [10, 7, 30, 8, 31].

A minimizer of Equation 2 on Sk is a discrete set of k means Sn,k = {m1, . . . ,mk}, which induces
a Dirichlet-Voronoi tiling of X : a collection of k regions, each closest to a common mean [3] (in our
notation, the subscript n denotes the dependence of Sn,k on the sample, while k refers to its size.)
By virtue of Sn,k being a minimizing set, each mean must occupy the center of mass of the samples
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in its Voronoi region. These two facts imply that it is possible to compute a local minimum of
the empirical risk by using a greedy coordinate-descent relaxation, namely Lloyd’s algorithm [27].
Furthermore, given a finite sample Xn, the number of locally-minimizing sets Sn,k is also finite
since (by the center-of-mass condition) there cannot be more than the number of possible partitions
of Xn into k groups, and therefore the global minimum must be attainable. Even though Lloyd’s
algorithm provides no guarantees of closeness to the global minimizer, in practice it is possible to
use a randomized approximation algorithm, such as kmeans++ [2], which provides guarantees of
approximation to the global minimum in expectation with respect to the randomization.

K-Flats. Let H = Fk be the class of collections of k flats (affine spaces) of dimension d. For
any value of k, k-flats, analogously to k-means, aims at finding the set Fk ∈ Fk that minimizes the
empirical reconstruction (2) over Fk. By an argument similar to the one used for k-means, a global
minimizer must be attainable, and a Lloyd-type relaxation converges to a local minimum. Note that,
in this case, given a Voronoi partition of M into regions closest to each d-flat, new optimizing flats
for that partition can be computed by a d-truncated PCA solution on the samples falling in each
region.

2.2 Learning a Manifold with K-means and K-flats

In practice, k-means is often interpreted to be a clustering algorithm, with clusters defined by the
Voronoi diagram of the set of means Sn,k. In this interpretation, Equation 2 is simply rewritten
by summing over the Voronoi regions, and adding all pairwise distances between samples in the
region (the intra-cluster distances.) For instance, this point of view is considered in [11] where k-
means is studied from an information theoretic persepective. K-means can also be interpreted to
be performing vector quantization, where the goal is to minimize the encoding error associated to
a nearest-neighbor quantizer [17]. Interestingly, in the limit of increasing sample size, this problem
coincides, in a precise sense [33], with the problem of optimal quantization of probability distribu-
tions (see for instance the excellent monograph of [18].)

When the data-generating distribution is supported on a manifold M, k-means can be seen to be
approximating points on the manifold by a discrete set of means. Analogously to the Euclidean
setting, this induces a Voronoi decomposition of M, in which each Voronoi region is effectively
approximated by a fixed mean (in this sense k-means produces a piecewise constant approximation
ofM.) As in the Euclidean setting, the limit of this problem with increasing sample size is precisely
the problem of optimal quantization of distributions on manifolds, which is the subject of significant
recent work in the field of optimal quantization [20, 21].

In this paper, we take the above view of k-means as defining a (piecewise constant) approximation of
the manifold M supporting the data distribution. In particular, we are interested in the behavior of
the expected reconstruction error Eρ(Sn,k), for varying k and n. This perspective has an interesting
relation with dictionary learning, in which one is interested in finding a dictionary, and an associated
representation, that allows to approximately reconstruct a finite set of data-points/signals. In this
interpretation, the set of means can be seen as a dictionary of size k that produces a maximally
sparse representation (the k-means encoding), see for example [29] and references therein. Crucially,
while the dictionary is learned on the available empirical data, the quantity of interest is the expected
reconstruction error, and the question of characterizing the performance with respect to this latter
quantity naturally arises.

Since k-means produces a piecewise constant approximation of the data, a natural idea is to consider
higher orders of approximation, such as approximation by discrete collections of k d-dimensional
affine spaces (k-flats), with possibly better performance. Since M is a d-manifold, the approx-
imation induced by k-flats may more naturally resemble the way in which a manifold is locally
approximated by its tangent bundle. We provide in Sec. 4.2 a partial answer to this question.

3 Reconstruction Properties of k-Means

Since we are interested in the behavior of the expected reconstruction (1) of k-means and k-flats for
varying k and n, before analyzing this behavior, we consider what is currently known about this
problem, based on previous work. While k-flats is a relatively new algorithm whose behavior is not
yet well understood, several properties of k-means are currently known.
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Figure 1: We consider the behavior of k-means for data sets obtained by sampling uniformly a 19
dimensional sphere embedded in R20 (left). For each value of k, k-means (with k-means++ seeding)
is run 20 times, and the best solution kept. The reconstruction performance on a (large) hold-out set
is reported as a function of k. The results for four different training set cardinalities are reported: for
small number of points, the reconstruction error decreases sharply for small k and then increases,
while it is simply decreasing for larger data sets. A similar experiment, yielding similar results,
is performed on subsets of the MNIST (http://yann.lecun.com/exdb/mnist) database
(right). In this case the data might be thought to be concentrated around a low dimensional manifold.
For example [22] report an average intrinsic dimension d for each digit to be between 10 and 13.

Recall that k-means find an discrete set Sn,k of size k that best approximates the samples in the
sense of (2). Clearly, as k increases, the empirical reconstruction error En(Sn,k) cannot increase,
and typically decreases. However, we are ultimately interested in the expected reconstruction error,
and therefore would like to understand the behavior of Eρ(Sn,k) with varying k, n.

In the context of optimal quantization, the behavior of the expected reconstruction error Eρ has been
considered for an approximating set Sk obtained by minimizing the expected reconstruction error
itself over the hypothesis space H = Sk. The set Sk can thus be interpreted as the output of a
population, or infinite sample version of k-means. In this case, it is possible to show that Eρ(Sk) is
a non increasing function of k and, in fact, to derive explicit rates. For example in the case X = Rd,
and under fairly general technical assumptions, it is possible to show that Eρ(Sk) = Θ(k−2/d),
where the constants depend on ρ and d [18].

In machine learning, the properties of k-means have been studied, for fixed k, by considering the
excess reconstruction error Eρ(Sn,k) − Eρ(Sk). In particular, this quantity has been studied for
X = Rd, and shown to be, with high probability, of order

√
kd/n, up-to logarithmic factors [31].

The case where X is a Hilbert space has been considered in [30, 8], where an upper-bound of order
k/
√

n is proven to hold with high probability. The more general setting where X is a metric space
has been studied in [7].

When analyzing the behavior of Eρ(Sn,k), and in the particular case that X = Rd, the above results
can be combined to obtain, with high probability, a bound of the form

Eρ(Sn,k) ≤ |Eρ(Sn,k)− En(Sn,k)|+ En(Sn,k)− En(Sk) + |En(Sk)− Eρ(Sk)|+ Eρ(Sk)

≤ C

(√
kd

n
+ k−2/d

)
(3)

up to logarithmic factors, where the constant C does not depend on k or n (a complete derivation is
given in the Appendix.) The above inequality suggests a somewhat surprising effect: the expected
reconstruction properties of k-means may be described by a trade-off between a statistical error (of

order
√

kd
n ) and a geometric approximation error (of order k−2/d.)

The existence of such a tradeoff between the approximation, and the statistical errors may itself not
be entirely obvious, see the discussion in [4]. For instance, in the k-means problem, it is intuitive
that, as more means are inserted, the expected distance from a random sample to the means should
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(a) Eρ(Sk=1) ' 1.5 (b) Eρ(Sk=2) ' 2

Figure 2: The optimal k-means (red) computed from n = 2 samples drawn uniformly on S100 (blue.) For a)
k = 1, the expected squared-distance to a random point x ∈ S100 is Eρ(Sk=1) ' 1.5, while for b) k = 2, it is
Eρ(Sk=2) ' 2.

decrease, and one might expect a similar behavior for the expected reconstruction error. This obser-
vation naturally begs the question of whether and when this trade-off really exists or if it is simply a
result of the looseness in the bounds. In particular, one could ask how tight the bound (3) is.

While the bound on Eρ(Sk) is known to be tight for k sufficiently large [18], the remaining terms
(which are dominated by |Eρ(Sn,k) − En(Sn,k)|) are derived by controlling the supremum of an
empirical process

sup
S∈Sk

|En(S)− Eρ(S)| (4)

and it is unknown whether available bounds for it are tight [30]. Indeed, it is not clear how close

the distortion redundancy Eρ(Sn,k) − Eρ(Sk) is to its known lower bound of order d

√
k1− 4

d

n (in
expectation) [4]. More importantly, we are not aware of a lower bound for Eρ(Sn,k) itself. Indeed,
as pointed out in [4], “The exact dependence of the minimax distortion redundancy on k and d is
still a challenging open problem”.

Finally, we note that, whenever a trade-off can be shown to hold, it may be used to justify a heuristic
for choosing k empirically as the value that minimizes the reconstruction error in a hold-out set.

In Figure 1 we perform some simple numerical simulations showing that the trade-off indeed occurs
in certain regimes. The following example provides a situation where a trade-off can be easily shown
to occur.

Example 1. Consider a setup in which n = 2 samples are drawn from a uniform distribution on the
unit d = 100-sphere, though the argument holds for other n much smaller than d. Because d � n,
with high probability, the samples are nearly orthogonal: < x1, x2 >X' 0, while a third sample x
drawn uniformly on S100 will also very likely be nearly orthogonal to both x1, x2 [25]. The k-means
solution on this dataset is clearly Sk=1 = {(x1 +x2)/2} (Fig 2(a)). Indeed, since Sk=2 = {x1, x2}
(Fig 2(b)), it is Eρ(Sk=1) ' 1.5 < 2 ' Eρ(Sk=2) with very high probability. In this case, it is
better to place a single mean closer to the origin (with Eρ({0}) = 1), than to place two means at
the sample locations. This example is sufficiently simple that the exact k-means solution is known,
but the effect can be observed in more complex settings.

4 Main Results

Contributions. Our work extends previous results in two different directions:

(a) We provide an analysis of k-means for the case in which the data-generating distribution is
supported on a manifold embedded in a Hilbert space. In particular, in this setting: 1) we derive
new results on the approximation error, and 2) new sample complexity results (learning rates)
arising from the choice of k by optimizing the resulting bound. We analyze the case in which
a solution is obtained from an approximation algorithm, such as k-means++ [2], to include this
computational error in the bounds.

5



(b) We generalize the above results from k-means to k-flats, deriving learning rates obtained from
new bounds on both the statistical and the approximation errors. To the best of our knowledge,
these results provide the first theoretical analysis of k-flats in either sense.

We note that the k-means algorithm has been widely studied in the past, and much of our analysis in
this case involves the combination of known facts to obtain novel results. However, in the case of k-
flats, there is currently no known analysis, and we provide novel results as well as new performance
bounds for each of the components in the bounds.

Throughout this section we make the following technical assumption:
Assumption 1. M is a smooth d-manifold with metric of class C1, contained in the unit ball in X ,
and with volume measure denoted by µI. The probability measure ρ is absolutely continuous with
respect to µI, with density p.

4.1 Learning Rates for k-Means

The first result considers the idealized case where we have access to an exact solution for k-means.
Theorem 1. Under Assumption 1, if Sn,k is a solution of k-means then, for 0 < δ < 1, there are
constants C and γ dependent only on d, and sufficiently large n′ such that, by setting

kn = n
d

2(d+2) ·
(

C

24
√

π

)d/(d+2)

·
{∫

M
dµI(x)p(x)d/(d+2)

}
, (5)

and Sn = Sn,kn , it is

P
[
Eρ(Sn) ≤ γ · n−1/(d+2) ·

√
ln 1/δ ·

{∫
M

dµI(x)p(x)d/(d+2)

}]
≥ 1− δ, (6)

for all n ≥ n′, where C ∼ d/(2πe) and γ grows sublinearly with d.

Remark 1. Note that the distinction between distributions with density in M, and singular distri-
butions is important. The bound of Equation (6) holds only when the absolutely continuous part of ρ
over M is non-vanishing. the case in which the distribution is singular over M requires a different
analysis, and may result in faster convergence rates.

The following result considers the case where the k-means++ algorithm is used to compute the
estimator.
Theorem 2. Under Assumption 1, if Sn,k is the solution of k-means++ , then for 0 < δ < 1, there
are constants C and γ that depend only on d, and a sufficiently large n′ such that, by setting

kn = n
d

2(d+2) ·
(

C

24
√

π

)d/(d+2)

·
{∫

M
dµI(x)p(x)d/(d+2)

}
, (7)

and Sn = Sn,kn
, it is

P
[
EZ Eρ(Sn) ≤ γ · n−1/(d+2)

(
lnn + ln ‖p‖d/(d+2)

)
·
√

ln 1/δ ·
{∫

M
dµI(x)p(x)d/(d+2)

}]
≥ 1−δ,

(8)
for all n ≥ n′, where the expectation is with respect to the random choice Z in the algorithm, and

‖p‖d/(d+2) =
{∫

M
dµI(x)p(x)d/(d+2)

}(d+2)/d

, C ∼ d/(2πe), and γ grows sublinearly with d.

Remark 2. In the particular case that X = Rd and M is contained in the unit ball, we may further
bound the distribution-dependent part of Equations 6 and 8. Using Hölder’s inequality, one obtains∫

dν(x)p(x)d/(d+2) ≤
[∫

M
dν(x)p(x)

]d/(d+2)

·
[∫

M
dν(x)

]2/(d+2)

≤ Vol(M)2/(d+2) ≤ ω
2/(d+2)
d ,

(9)

where ν is the Lebesgue measure in Rd, and ωd is the volume of the d-dimensional unit ball.
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It is clear from the proof of Theorem 1 that, in this case, we may choose

kn = n
d

2(d+2) ·
(

C

24
√

π

)d/(d+2)

· ω2/d
d ,

independently of the density p, to obtain a bound Eρ(S∗n) = O
(
n−1/(d+2) ·

√
ln 1/δ

)
with prob-

ability 1 − δ (and similarly for Theorem 2, except for an additional lnn term), where the constant
only depends on the dimension.
Remark 3. Note that according to the above theorems, choosing k requires knowledge of proper-
ties of the distribution ρ underlying the data, such as the intrinsic dimension of the support. In fact,
following the ideas in [36] Section 6.3-5, it is easy to prove that choosing k to minimize the recon-
struction error on a hold-out set, allows to achieve the same learning rates (up to a logarithmic
factor), adaptively in the sense that knowledge of properties of ρ are not needed.

4.2 Learning Rates for k-Flats

To study k-flats, we need to slightly strengthen Assumption 1 by adding to it by the following:
Assumption 2. Assume the manifold M to have metric of class C3, and finite second fundamental
form II [16].

One reason for the higher-smoothness assumption is that k-flats uses higher order approximation,
whose analysis requires a higher order of differentiability.
We begin by providing a result for k-flats on hypersurfaces (codimension one), and next extend it to
manifolds in more general spaces.
Theorem 3. Let, X = Rd+1. Under Assumptions 1,2, if Fn,k is a solution of k-flats, then there is a
constant C that depends only on d, and sufficiently large n′ such that, by setting

kn = n
d

2(d+4) ·
(

C

2
√

2πd

)d/(d+4)

· (κM)4/(d+4)
, (10)

and Fn = Fn,kn , then for all n ≥ n′ it is

P

[
Eρ(Fn) ≤ 2 (8πd)2/(d+4)

Cd/(d+4) · n−2/(d+4) ·
√

1
2

ln 1/δ · (κM)4/(d+4)

]
≥ 1− δ, (11)

where κM := µ|II|(M) =
∫
M

dµI(x)|κ1/2
G (x)| is the total root curvature of M, µ|II| is the measure

associated with the (positive) second fundamental form, and κ
G

is the Gaussian curvature on M.

In the more general case of a d-manifold M (with metric in C3) embedded in a separable Hilbert
space X , we cannot make any assumption on the codimension of M (the dimension of the orthog-
onal complement to the tangent space at each point.) In particular, the second fundamental form II,
which is an extrinsic quantity describing how the tangent spaces bend locally is, at every x ∈ M, a
map IIx : TxM 7→ (TxM)⊥ (in this case of class C1 by Assumption 2) from the tangent space to
its orthogonal complement (II(x) := B(x, x) in the notation of [16, p. 128].) Crucially, in this case,
we may no longer assume the dimension of the orthogonal complement (TxM)⊥ to be finite.
Denote by |IIx| = supr∈TxM

‖r‖≤1
‖IIx(r)‖

X
, the operator norm of IIx. We have:

Theorem 4. Under Assumptions 1,2, if Fn,k is a solution to the k-flats problem, then there is a
constant C that depends only on d, and sufficiently large n′ such that, by setting

kn = n
d

2(d+4) ·
(

C

2
√

2πd

)d/(d+4)

· κ4/(d+4)
M

, (12)

and Fn = Fn,kn , then for all n ≥ n′ it is

P

[
Eρ(Fn) ≤ 2 (8πd)2/(d+4)

Cd/(d+4) · n−2/(d+4) ·
√

1
2

ln 1/δ · κ4/(d+4)
M

]
≥ 1− δ, (13)

where κM :=
∫
M

dµI(x) |IIx|2
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Note that the better k-flats bounds stem from the higher approximation power of d-flats over points.
Although this greatly complicates the setup and proofs, as well as the analysis of the constants, the
resulting bounds are of order O

(
n−2/(d+4)

)
, compared with the slower order O

(
n−1/(d+2)

)
of

k-means.

4.3 Discussion

In all the results, the final performance does not depend on the dimensionality of the embedding
space (which in fact can be infinite), but only on the intrinsic dimension of the space on which the
data-generating distribution is defined. The key to these results is an approximation construction in
which the Voronoi regions on the manifold (points closest to a given mean or flat) are guaranteed to
have vanishing diameter in the limit of k going to infinity. Under our construction, a hypersurface is
approximated efficiently by tracking the variation of its tangent spaces by using the second funda-
mental form. Where this form vanishes, the Voronoi regions of an approximation will not be ensured
to have vanishing diameter with k going to infinity, unless certain care is taken in the analysis.

An important point of interest is that the approximations are controlled by averaged quantities,
such as the total root curvature (k-flats for surfaces of codimension one), total curvature (k-flats
in arbitrary codimensions), and d/(d + 2)-norm of the probability density (k-means), which are
integrated over the domain where the distribution is defined. Note that these types of quantities have
been linked to provably tight approximations in certain cases, such as for convex manifolds [19, 12],
in contrast with worst-case methods that place a constraint on a maximum curvature, or minimum
injectivity radius (for instance [1, 32].) Intuitively, it is easy to see that a constraint on an average
quantity may be arbitrarily less restrictive than one on its maximum. A small difficult region (e.g.
of very high curvature) may cause the bounds of the latter to substantially degrade, while the results
presented here would not be adversely affected so long as the region is small.

Additionally, care has been taken throughout to analyze the behavior of the constants. In particular,
there are no constants in the analysis that grow exponentially with the dimension, and in fact, many
have polynomial, or slower growth. We believe this to be an important point, since this ensures that
the asymptotic bounds do not hide an additional exponential dependence on the dimension.
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