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Abstract
Identifying patterns from the neuroimaging recordings of brain activity related
to the unobservable psychological or mental state of an individual can be treated
as a unsupervised pattern recognition problem. The main challenges, however,
for such an analysis of fMRI data are: a) defining a physiologically meaningful
feature-space for representing the spatial patterns across time; b) dealing with
the high-dimensionality of the data; and c) robustness to the various artifacts and
confounds in the fMRI time-series.

In this paper, we present a network-aware feature-space to represent the states
of a general network, that enables comparing and clustering such states in a
manner that is a) meaningful in terms of the network connectivity structure;
b)computationally efficient; c) low-dimensional; and d) relatively robust to struc-
tured and random noise artifacts. This feature-space is obtained from a spherical
relaxation of the transportation distance metric which measures the cost of trans-
porting “mass” over the network to transform one function into another. Through
theoretical and empirical assessments, we demonstrate the accuracy and efficiency
of the approximation, especially for large problems.

1 Introduction

In addition to functional localization and integration, mapping the neural correlates of “mental
states” or “brain states” (i.e. the distinct cognitive, affective or perceptive states of the human mind)
is an important research topic for understanding the connection between mind and brain [2]. In
functional neuroimaging, this problem is equivalent to identifying recurrent spatial patterns from
the recorded activation of neural circuits and relating them with the mental state of the subject.
Although clustering the data across time to identify the intrinsic state of an individual from EEG
and MEG measurements is an established procedure in electrophysiology [19], analysis of tempo-
ral patterns in functional MRI data have generally used supervised techniques such as multivariate
regression and classification [18, 11, 9], which restrict analysis to observed behavioral correlates of
mental state, ignoring any information about the intrinsic mental state that might be present in the
data.

In contrast to clustering voxels based on the similarity of their functional activity (i.e. along the
spatial dimension) [15], the problem of clustering fMRI data along the temporal dimension has
not been widely explored in literature, primarily because of the following challenges: a) Lack of
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a physiologically meaningful metric to compare the difference between the spatial distribution of
recorded brain activity (i.e. brain states) at two different time-points; b) Problems that arise because
the number of voxels (i.e. dimensions) is orders of magnitude larger (N ∼ O(105) vs. T ∼ O(102))
than the number of scans (i.e. samples) ; and c) Structured and systematic noise due to factors such
as magnetic baseline drift, respiratory and cardiac activity, and head motion. The dimensionality
problem in fMRI has been typically addressed through PCA [16], ICA[3] or by selection of a subset
of voxels either manually or via regression against the stimulus [18, 11]. PCA has generally been
found to be problematic in fMRI [18, 11, 13], since the largest variance principal components usually
correspond to motion and physiological noise such as respiration and pulsatile activity, while ICA
does not provide an automated way of selecting components. On the other hand, supervised feature-
spaces are inherently biased towards the experimental variables against which they were selected or
by the investigator’s expectations, and may not capture unexpected patterns in the data.

In the first contribution of this paper, we address these problems by using a network-aware metric
that captures the difference between the states zt1 , zt2 at two different time-points t1, t2 of a
temporally evolving function zG : V × [0, T ] → R defined on the vertices V of a network (i.e. an
weighted undirected graph) G = (V,E), in a manner that is aware of the connectivity structure
E of the underlying network. Intuitively, this network-aware metric assesses the distance between
two states zt1 , zt2 that differ mainly on proximally connected nodes to be less than the distance
between states zt1 , zt2 that differ on unconnected nodes. This concept is illustrated in Fig. 1.

zt1 

zt2 

zt3 

Figure 1: Shown are zt1 , zt2 and zt3 , three states
of the function zG on the network G. Here, zt1 and
zt2 activate on more proximal regions of the graph and
are hence assessed to be more similar than zt1 and zt3 .
Similarly, for zt2 and zt3 .

In the context of neuroimaging, where the net-
work measures the functional connectivity [4]
between brain regions, this implies that two
brain activation patterns that differ mainly on
functionally similar regions are functionally
closer than two that differ on functionally un-
related regions. For example, zt1 and zt2 that
activated mainly in the cingulo-opercular net-
work would be functionally more similar with
each other than with zt3 that exhibited activity
mainly in the fronto-parietal network.

Such network awareness is provided by the
Kantorovich metric[20], also called the trans-
portation distance (TD), which measures the
minimum flow of “mass” over the network to
make zt1 at time t1 match zt2 that at t2 . The
cost of this flow is encoded by the weights of
the edges of the graph. The Earth Movers Dis-
tance (EMD), closely related to the transporta-
tion distance, is widely used for clustering and
retrieval in computer vision, medical imaging,
bio-informatics and data-mining [21, 22, 7]. One major strength of this family of metrics for neu-
roimaging applications, over voxel-wise image matching, is that it allows for partial matches thereby
mitigating the effect of small differences between the measurements that arise due to spatial dis-
placement such as head-motion or from random noise [21].

The TD, however, has the following limitations: Firstly, it is computationally expensive with worst-
case complexity of O(NV

3 logNV) where NV is the number of nodes in the graph [17]. If the
number of time-series observations is T , clustering requires O(T 2) comparisons, making compu-
tation prohibitively expensive for large data-sets. Secondly, and more importantly, the metric is the
solution to an optimization problem and therefore does not have a tractable geometric structure. For
example, there is no closed form expression of the centroid of a cluster under this metric. As a result,
determining the statistical properties of clusters obtained under this metric, leave alone developing
more sophisticated models, is not straightforward. Although linear embedding (i.e. Euclidean) ap-
proximations have been proposed for the EMD [12, 22], they are typically defined for comparing
probability distributions over regular grids and extension to functions over arbitrary networks is an
open problem.
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The second contribution of this paper is to address these issues through the development of a linear
feature-space that provides a good approximation of the transportation distance. This feature–space
is motivated by spherical relaxation [14] of the dual polytope of the transportation problem, as
described in Section 2. The network function zG is then embedded into an Euclidean space via a
similarity transformation such that the the transportation distance is well-approximated by the `2
distance in this space, as elucidated in Section 3. In contrast to existing linear approximations, the
feature-space developed here has a very simple form closely related to the graph Laplacian [6].
Theoretical bounds to the error the approximation are developed and the accuracy of the method
is validated empirically in Section 4.1. Here, we show that the feature–space does not deteriorate,
but on the contrary, may improve as the size of the graph increases, making it highly suitable for
dealing with large networks like the brain. Its application to extracting the intrinsic mental-states,
in an unsupervised manner, from an fMRI study for a visuo-spatial motor task is demonstrated in
Section 4.2. Detailed proofs and descriptions are provided in the Supplemental to the manuscript.

2 Transportation Distance and Spherical Relaxation

Let zt1 and zt2 denote the states of zG at time-points t1, t2 on the graph G = (V,E), with nodes
V = {1 . . . NV} and edges E = {(i, j) | i, j ∈ V}. The symmetric distance matrix WG[i, j] ∈ R+

encodes the cost of transport between nodes i and j. Also, define the difference between two states
as dz = zt1 − zt2 , and assume

∑
i∈V dz[i] = 0 without loss of generality 1 . The minimal cost

TD(zt1 , zt1), of transport f : E→ R+ of “mass” over the network to convert zt1 into zt2 , is posed as
the following linear program (LP):

TD(zt1 , zt2) = min
f

∑
i∈V

∑
b∈V

f [i, j]WG[i, j], subject to
∑
j

f [i, j]−
∑
j

f [j, i] = dz[i]. (1)

The corresponding TP dual, formulated in the unrestricted dual variables g : V→ R, is:

TD(zt1 , zt2) = max
g
〈g,dz〉 subject to Ag ≤ wG (2)

where A =



1 −1 0 . . . 0
1 0 −1 . . . 0
...

. . .
...

1 0 0 . . . −1
−1 1 0 . . . 0
0 1 −1 . . . 0
...

. . .
...

0 1 0 . . . −1
...

. . .
...


and wG =



WG[1, 2]
WG[1, 3]

...
WG[1, N ]
WG[2, 1]
WG[2, 3]

...
WG[2, N ]

...


.

The feasible set of the dual is a convex polytope formed by the intersection of the half-spaces
specified by the constraints {ai,j , i = 1 : NV, j = 1 . . . NV, i 6= j}, corresponding to the rows of A,
and containing a +1 entry in the i–th position and a −1 entry in the j–th position. These constraints
which form normals to the hyper-planes bounding this polytope, are symmetrically distributed in
the +i×−j quadrant of RNV for each combination of i and j . Moreover, A is totally uni-modular
[5], and has rank of NV − 1 with the LP polytope lying in an NV − 1 dimensional space orthogonal
to 1NV , the 1 –vector in RNV . In the discussion below, we operate in the original RNV notation,
by considering its restriction to the NV − 1 dimensional sub-space {g ∈ RNV | 〈g,1NV〉 = 0},
i.e.

∑
i∈V g[i] = 0. The optimal solution to this problem will lie on the NV − 1 simplicial complex

formed by intersections of the NV − 1 dimensional hyper-planes each at a distance of WG[i, j]/
√

2
from the origin, and in the non-degenerate case will coincide with the extreme-points of the polytope
Ag ≤ wG.

Consider the a special case for the fully-connected graph with WG[i, j] = 1, ∀i, j ∈ V. Here,

TD(zt1 , zt2) = max
g

< g,dz > subject to Ag ≤ 1NV×(NV−1). (3)

Each hyper-plane of the LP polytope is at distance 1/
√

2 from the origin and the maximum inscribed
hyper-sphere, with center at the origin and radius 1/

√
2 touches all the polytope’s hyper-planes. The

1 Add dummy node with indexNV+1 where dz[NV+1] = −
∑
i∈V dz[i] and WG[i,NV+1] = 0,∀i ∈ V.
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main idea of the embedding is to use the regularity of this polytope, with 2NV − 2 extreme points
symmetrically distributed in RNV−1 (§ Proposition 2 in the Supplemental) and approximate it by this
hyper-sphere. Relaxing the feasible set of the TP dual from the convex polytope to this hyper-sphere,
eqn. (2) becomes:

T̂D(zt1 , zt2) = max
g

< g,dz > such that ||g||2 =
1√
2
, (4)

which has a direct solution

T̂D(zt1 , zt2) =
1√
2
||dz|| = 1√

2
||zt1 − zt2 || with ĝ∗ =

1√
2

dz

||dz|| (5)

The worst-case error of this approximation is O(||dz||) (§Theorem 1 of the Supplemental), proving
that quality of the linear approximation for a graph where all nodes are equidistant neighbors of each
other does not deteriorate as the size of the graph increases.

3 Linear Feature Space Embedding

In the case of an arbitrary distance matrix WG, however, the polytope loses its regular structure, and
has a variable number of extreme points. Also, in general, the maximal inscribed hyper-sphere does
not touch all the bounding hyper-planes, resulting in a very poor approximation [14]. Therefore, to
use the spherical relaxation for the general problem, we apply a similarity transformation M, such
that A · M = diag{wG}−1A and M positive semi-definite. Expressing eqn. (2) in terms of a new
variable ξ , Mg, we see that the general problem:

TD(zt1 , zt2) = max
g

< g,dz > such that Ag ≤ wG (6)

is equivalent to the special case given by eqn. (3), in a transformed space, as per:

TD(zt1 , zt2) = max
ξ

< M−ξ,dz > such that Aξ ≤ 1NV×(NV−1), (7)

where M− is the (pseudo-)inverse of M. Then, the approximation of eqn. (4) yields: T̂D(zt1 , zt2) =
1√
2
||M−1>(zt1 − zt2)||.

As shown in Supplemental Section A, the transformation matrix M = 1
NV
LG, where LG = D∆G −∆G

is the un-normalized Laplacian matrix of the graph. Here, ∆G is the adjacency matrix such that
∆G[i, j] = WG[i, j]−1, ∀i 6= j and D∆G is the diagonal degree matrix with D∆G [i, i] =

∑
j∈V ∆G[i, j]

and D∆G [i, j] = 0, for i 6= j. Defining VΛV> = LG as the eigen-system of the graph Laplacian, and
the projection of zt onto the feature space VΛ− as ẑt = Λ−V>zt yields:

T̂D(zt1 , zt2) =
1√
2
||Λ−V>dz|| = 1√

2
||ẑt1 − ẑt2 ||. (8)

Consequently, the transportation distance can be approximated by a `2 metric through a similarity
transformation of the original space. In this case the error of the approximation is O(λ−1

min||dz||2)
(§Theorem 1 of the Supplemental), which implies that the approximation improves as the smallest
eigenvalue of the graph Laplacian increases. Also, notice that the eigenvector vNV of LG corre-
sponding to the smallest eigenvalue λNV = 0 is a constant vector, and therefore 〈vNV ,dz〉 = 0 by
the requirement that

∑
i∈V dz[i] = 0 , thereby automatically reducing the dimension of the projected

space to NV − 1 .

Dimensionality reduction of the feature-space can be achieved by discarding eigenvectors of LG
with the P largest eigenvalues whose inverse sum contributes to less than a certain percentage of the
total inverse spectral energy. If eigenvectors with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λP are discarded, the
additional error in T̂D(zt1 , zt2) is equal to

√∑P
k=1 λ

−2
k /

√∑NV
k=P+1 λ

−2
k .

4 Results

First, we start by providing an empirical validation of the approximation to the transportation dis-
tance in Section 4.1 And then the feature-space is used to find representative patterns (i.e. brain
states) in the dynamically changing activations of the brain during a visuo-motor task in Section 4.2.
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4.1 Validation

To validate the linear approximation to the transportation distance on networks, like the brain, that
exhibit a scale-free property [1], we simulated random graphs of NV vertices using the following
procedure: a) Create an edge between nodes i and j with probability ∝ β(di + dj + ε) , where di
is the degree of node i, and β, ε are constants that are varied across experiments; b) sample the
weight of the edge from a χ2

1 distribution scaled by a constant γ, varied across experiments. For
each instance G(n) of the graph, a set of T = 100 states zt : V(i) → R, t = 1 . . . 104 were sampled
from a standard normal distribution such that

∑
i dz[i] = 0. The experiment was repeated 10 times

at graph sizes of NV = 2n, n = 4 . . . 12.

The transportation problem was solved using network simplex [17] in the IBM CPLEXr optimiza-
tion package, while the linear approximation was implemented in Matlabr. All experiments were
run on a 2.6Hz Opteron cluster with 16 processors and 32GB RAM each. The amortized running
time for one pair-wise comparison is shown in Fig. 2(a). While an individual run of the network
simple algorithm is much faster than the eigen-system computation of the linear feature-space, re-
peatedly solving TD(zt1 , zt2) for all pairs of zt1 , zt2 is orders of magnitude slower than a simple
Euclidean distance, reducing its net efficiency.

The relative error, as shown in Fig. 2(b), reduces with increasing number of vertices, approximately
asO(NV

−1). This is because the approximation error for an arbitrary graph isO(λ−1
min||dz||2) , while

for random graphs satisfying basic regularity conditions the eigenvalues of the graph Laplacian
increase as O(NV) [8]. In comparison, the Euclidean metric ||zt1 − zt2 ||2 starts with a much higher
relative error with respect to the transportation distance, and although its error also reduces with
graph size, the trend is slower. Secondly, the variance of the error is much higher than the linear
embedding proposed here.

In the context of clustering, which is the motivation for this work, a more important property is that
the approximation preserve the relative configuration (i.e. homomorphism) between observations
rather than the numerical values of their distances (i.e. isomorphism), as characterized by its abil-
ity to preserve the relative ordering between points (i.e. a topological equivalence property). From
Fig. 2(c), we observe that for data-points that are relatively close to each other, the ordering rela-
tionships are preserved with very high accuracy and it reduces as the relative distance between the
points increases.

Another important property for an embedding scheme, especially for non-linear manifolds like that
induced by the TD, is its ability to preserve the relative distances between points that are in local
neighborhoods (i.e. a coordinate chart property ). This is quantified by a normalized neighborhood
error as defined by:

NormErr(zt1 , zt2) =
|a− b|
|a| ,where a =

TD(zt1 , zt2)∑
n∈Nt1

TD(zt1 , ztn)
and b =

T̂D(zt1 , zt2)∑
n∈Nt1

T̂D(zt1 , ztn)
.

The neighborhoods Nt1 contain the 10 nearest neighbors of zt1 under the TD and T̂D metrics
respectively. The formulation has the effect of normalizing the distance between zt1 , zt2 with respect
to the local neighborhood of zt1 . It can be seen in Fig. 2(d) that the approximation error according
to this measure is extremely low and almost constant with respect to NV for points that are close to
each other. These plot indicate that although T̂D does not hold for distant points on the manifold
induced by TD, it provides a good approximation of its topology.

4.2 Neuroimaging Data

Clustering using the feature-space described in this paper was applied to a data-set of fifteen sub-
jects performing a visuo-motor task during functional MR imaging to discover salient patterns of
recurrent brain activation. The subjects were visually exposed to oriented wedges filled with high-
contrast random noise patterns and displayed randomly in one of four quadrants. They were asked
to focus on a center dot and to perform a finger-tapping motion with the right or left hand when the
visual wedge was active in the upper right or lower left quadrants, respectively. Block length of each
visual wedge stimulation varied from 5 to 15s and noise patterns changed at a frequency of 5Hz. A
multi-shot 3D Gradient Echo Planar Imaging (EPI) sequence accelerated in the slice encoding di-
rection with GRAPPA and UNFOLD was used on a GE 3T MRI scanner with a quadrature head
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Figure 2: Fig.(a) shows the (amortized) per-comparison running time in seconds for the transportation dis-
tance TD and its approximation T̂D with respect to with respect to graph size NV. In Fig.(b) the relative
approximation error (T̂D − TD)/TD (±1 std.dev.) is graphed. The error for an Euclidean approximation
||zt1 − zt2 ||2 is also shown for comparison. Fig.(c) shows the quartile-wise ordering error (±1 std.dev). For
each zt1 , the fraction of {zt2 , t2 = 1 . . . T, t2 6= t1} that are misordered by T̂D(zt1 , zt2) with respect to
the ordering induced by TD(zt1 , zt2) is calculated. The set {zt2} is divided into quartiles according to their
distance TD(zt1 , zt2) from zt1 , where the 25 percentile is set of the first 25% closest points to zt1 (similarly
for the 50 and 75%-iles). Also shown is the ordering error of the Euclidean metric with respect to TD. Error-
bars are omitted for clarity. Fig (d) shows the quartile-wise approximation error normalized by the average
distance of its 10 nearest neighbors. The dashed line shows the un-normalized approximation error (§ Fig.(b))
for reference.

coil and T = 171 volumes were acquired at TR=1.05s, an isotropic resolution of 3mm, with total
imaging time of 3min and the first five volumes were discarded from the analysis. High resolution
anatomical scans were also acquired, bias-field corrected, normalized to an MNI atlas space and
segmented into gray and white matter regions. The fMRI scans were motion corrected using linear
registration and co- registered with the structural scans using SPM8 [16]. Next, the time-series data
were high-pass filtered (0.5Hz) to remove gross artifacts due to breathing, blood pressure changes
and scanner drift. The data were first analyzed for task related activity using a general linear model
(GLM) with SPM8 for reference. The design matrix included a regressor for the presentation of the
wedge in each quadrant, convolved with a canonical hemodynamic response function. These results
are shown in Fig. 3(a).

Note that the data for each subject were processed separately. The mean volume of the time-series
was then subtracted, white matter masked out and all further processing was performed on the gray
matter. The functional networks for a subject were computed by estimating the correlations be-
tween voxels using the method described in Supplemental Section C, that is sparse, consistent and
computationally efficient. The distance matrix of the functional connectivity graph was constructed
as WG[i, j] = − log(|ρ[i, j]|/τ), where ρ[i, j] is the correlation between voxels i and j and τ is a
user-defined scale parameter (typically set to 10). This mapping has the effect that WG[i, j] → 0 as
|ρ[i, j]| → 1 and WG[i, j]→∞ as |ρ[i, j]| → 0 .

The linear feature-space (§eqn. (8)) was computed from the graph Laplacian of ∆G, where ∆G[i, j] =
WG[i, j]−1, retaining only those basis vectors corresponding to the top 80 eigenvalues (≈ 50% of
the spectral energy), and the fMRI volumes were embedded into this low dimensional space. For

6



clustering, the state-space method (SSM) of Janoos, et al. [13] was used, which is a modified hidden
Markov model with Gaussian emission probabilities that assigns a state (i.e. cluster) label to each
scan while accounting for the temporal blurring cause by the hemodynamic response. This method
associates each time-point t of the fMRI time-series with a vector πt = {πt[1] . . . πt[K] | πt[k] ∈
[0, 1],

∑
k πt[k] = 1} giving the probability of belonging to state 1 . . .K. A multinomial logistic

classifier (MLC) was then trained to predict the wedge position at time t from πt. The number
of clusters was determined by selecting a value of 5 ≤ K ≤ 15 that minimized the generalization
error of the MLC, which acts as a statistic to assess the quality of the model-fit and perform model
selection.

It should be noted here that identification of patterns of recorded brain activity was performed in
a purely unsupervised manner. Only model selection and model interpretation was done, post hoc,
using observable correlates of the unobservable mental state of the subject. Spatial maps for each
wedge orientation were computed as an average of cluster centroids weighted by the MLC weights
for that orientation. The z-statistic spatial maps for the group from this analysis are shown in
Fig. 3(b), and exhibit the classic contra-lateral retinotopic organization of the primary visual cor-
tex with the motor representation areas in both hemispheres. Fig. 3(c) shows the distribution of state
probabilities for one subject corresponding to a sequence of wedges oriented in each quadrant for
4×TRs each. Here, we see that the probability of a particular state is highly structured with respect
to the orientation of the wedge. For example, at the start of the presentation with the wedge in the
lower-right quadrant, state 1 is most probable. But by the second interval, state 2 becomes more
dominant and this distribution remains stable for the rest of this presentation. Then, as the display
transitions to the lower-left quadrant, states 3 and 4 become equiprobable. However, as this orien-
tation is maintained, the probability distribution peaks about state 4 and remains stable. A similar
pattern in observed in the probability distributions for the other orientations.

For comparison, we also performed the same clustering using a low-dimensional PCA basis explain-
ing ≈ 50% of the variance of the data (d = 60), and the low-dimensional basis (CorrEig) proposed
by [13] derived from the eigen-decomposition of the voxel-wise correlation matrix (d ≈ 110).
Multinomial logistic classifiers (MLC) were trained for each case and number of states were tuned
using the same procedure as above. The spatial maps reconstructed from these two feature-spaces
(not shown here) exhibited task-specific activation patterns, although the foci were much weaker
and much more diffused as compared to those of the T̂D feature-space. The error of the MLC in
predicting the stimulus at time t from the state probability vector πt, which reflects the model’s
ability to capture patterns in the data related to the mental state of the subject, for these three feature
spaces is listed in Table 1.

Lower right Lower left Upper left Upper right Overall

T̂D 0.17 (± 0.05) 0.13 (± 0.02) 0.21 (± 0.04) 0.12 (± 0.03) 0.16 (± 0.07)
PCA 0.41 (± 0.08) 0.37 (± 0.10) 0.39 (± 0.09) 0.36 (± 0.08) 0.38 (± 0.18)
CorrEig 0.29 (± 0.05) 0.22 (± 0.04) 0.30 (± 0.06) 0.23 (± 0.05) 0.26 (± 0.10)

Table 1: The generalization error of the multinomial logistic classifier to predict the orientation of the wedge
from the distribution of state labels estimated by the SSM trained on three low-dimensional representations of
the fMRI data: a) the approximate transportation distance T̂D; b) PCA basis; and c) the eigen basis of the
voxel-wise correlation matrix (CorrEig). Due to the random presentation of wedge orientations, the chance
level prediction error varied between 68%−−81% for each subject.

We see that the prediction error – and therefore the ability of the state-space model to identify
mental-state related patterns in the data – is significantly better for the T̂D feature-space as com-
pared to that of [13] (p < 10−6, 1-sided 2-sample t-test) while PCA performs significantly worse
than both the other feature-spaces, as expected. Moreover, the T̂D representation provides a sig-
nificant difference (p < 0.001, 1-sided 2-sample t-test) between the prediction rates for the wedge
orientations with and without the finger-tapping task, implying that the model is able to better detect
brain patterns when both visual and motor regions are involved as compared to those involving only
the visual regions, probably because of the more distinct functional signature of the former.
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(c) Cluster membership probability vs. experimental stimulus 
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Figure 3: Fig. (a): Group-level maximum intensity projections of significantly activated voxels (p < 0.05,
FWE corrected) at the four orientations of the wedge and the hand motor actions, computed using SPM8
Fig. (b): Group-level z-maps showing the activity for each orientation of the wedge computed as an average of
cluster centroids weighted by the MLC weights. Displayed are the posterio-lateral and posterio-medial views of
the left and right hemispheres respectively. Values |z| ≤ 1 have been masked out for visual clarity. Fig. (c): The
SSM state probability vector πt for one subject. The size of the circles corresponds to the marginal probability
πt[k] of state k = 1 . . . 8 during the display of the wedge in lower right, lower left, upper left and upper right
quadrants for 4TRs each. States have been relabeled for expository purposes.

5 Conclusion

In this paper, we have presented an approach to compare and identify patterns of brain activation
during a mental process using a distance metric that is aware of the connectivity structure of the
underlying brain networks. This distance metric is obtained by an Euclidean approximation of the
transportation distance between patterns via a spherical relaxation of the linear-programming dual
polytope. The embedding is achieved by a transformation of the original space of the function
with the graph Laplacian of the network. Intuitively, the eigen-system of graph Laplacian indicates
min-flow / max-cut partitions of the graph [10], and therefore projecting on these basis increases
the cost if the difference between two states of the function is concentrated on relatively distant or
disconnected regions of the graph.

We provided theoretical bounds on the quality of the approximation and through empirical validation
demonstrated low error that, importantly, decreases as the size of the problem increases. We also
showed the superior ability of this distance metric to identify salient patterns of brain activity, related
to the internal mental state of the subject, from an fMRI study of visuo-motor tasks.

The framework presented here is applicable to the more general problem of identifying patterns in
time-varying measurements distributed over a network that has an intrinsic notion of distance and
proximity, such as social, sensor, communication, transportation, energy and other similar networks.
Future work would include assessing the quality of the approximation for sparse, restricted topology,
small-world and scale-free networks that arise in many real world cases, and applying the method
for detecting patterns and outliers in these types of networks.
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