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Abstract

In this work we consider a setting where we have a very large number of related
tasks with few examples from each individual task. Rather than either learning
each task individually (and having a large generalization error) or learning all the
tasks together using a single hypothesis (and suffering a potentially large inherent
error), we consider learning a small pool of shared hypotheses. Each task is then
mapped to a single hypothesis in the pool (hard association). We derive VC dimen-
sion generalization bounds for our model, based on the number of tasks, shared
hypothesis and the VC dimension of the hypotheses class. We conducted exper-
iments with both synthetic problems and sentiment of reviews, which strongly
support our approach.

1 Introduction

Consider sentiment analysis task for a set of reviews for different products. Each individual product
has only very few reviews, which does not enable reliable learning. Furthermore, reviewers may use
different amount and level of superlatives to describe the same sentiment level, or feeling different
sentiment level yet describing the product with the same text. For example, one may use the sen-
tence “The product is OK” to describe the highest-satisfaction, while another would use “Its a great
product, but not amazing” to describe some notion of disappointment. Should one build individual
sentiment predictors, one per product, based on small amount of data, or build a single sentiment
predictor for all products, based on mixed input with potentially heterogeneous linguistic usage?

One methodology is to cluster individual products to categories, and run the learning algorithm
on the aggregated data. While in some cases the aggregation might be simple, in other cases it
might be a challenge. (For example, you can cluster restaurants by the cuisine, by the price, by the
location, etc.) In addition, the different tasks might be somewhat different on both domain (text
used) or predictions (sentiment association with given text), which may raise the dilemma between
clustering related tasks or related domain.

In this work we propose an alternative methodology. Rather than clustering the different tasks before
the learning, perform it as part of the learning task. Specifically, we consider a very large number
of tasks, with only few examples from each domain. The goal is to output a pool of few classifiers,
and map each task to a single classifier (or a convex combination of them). The idea is that we can
control the complexity of the learning process by deciding on the size of pool of shared classifiers.
This is a very natural approach, in such a setting.

Our first objective it to study the generalization bounds for such a simple and natural setting. We
start by computing an upper and lower bounds on the VC dimension, showing that the VC dimension
is at most O(T log k + kd log(Tkd)), where T is the number of domains, k the number of shared
hypothesis and d the VC dimension of the basic hypothesis class. We also show a lower bound
of max{kd , T min{d, log k}}. This shows that the dependency on the number of tasks (T ) and
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the number of shared hypothesis (k) is very different, namely, increasing the number of shared
hypothesis increases the VC dimension only logarithmically. This will imply that if we have N

examples per task, the generalization error is only Õ

(√
log k
N + dk

TN

)
compared to O

(√
d
N

)
when learning each task individually. So we have a significant gain when log k � N and k � T ,
which is a realistic case. We also derived a K-means like algorithm to learn such classifiers, of both
models and association of tasks and models.

Our experimental results support the general theoretical framework introduced. We conduct experi-
ment with both synthetic problems and sentiment prediction, with number of tasks ranging beween
30−370, some contain as high-as 18 examples in the training set. Our experimental results strongly
support the benefits from the approach we propose here, which attains lower test error compared
with learning individual models per task, or a single model for all tasks.

Related Work

In the recent years there is increasing body of work on domain adaptation and multi-task learning. In
domain adaptation we often assume that the tasks to be performed are very similar to each other, yet
the data comes from different distributions, and often there is only unlabeled data from the domain
(or task) of interest. Mansour et al. [18] develop theory when distribution of the problem of interest
(called target) is a convex combination of other distributions for which samples from each is given.

Ben-David et al. [6] focused in classification and developed a distance between distributions and
used it to develop new generalization bounds when training and test examples are not coming from
the same distributions. Mansour et al. [19] built on that work and developed new distance and theory
for adaptation problems with arbitrary loss functions. See also a recent result of Blanchard et al [7].

Another direction of research is to learn few problems simultaneously, yet, unlike in domain adap-
tation, assuming examples are coming from the same distribution. Obozinski et al. [20] proposed to
learn one model per task, yet find a small set of shared features using mixed-norm regularization.
Argyriou et al. [4] took a similar approach, yet with added complexity that the feature space can
also be rotated before choosing this small shared set. Ando and Zhang [2], and Amit et al. [1], learn
by first finding a linear transformation shared by all tasks, and then individual models per task. The
first formulation is not convex, while the later is. Evgeniou [13] and Daume [15] proposed to com-
bine two models, one individual per task and the other shared across all tasks, and combine them
at test time, while later Evgeniou et al. [12] proposed to learn one model per task, and force all the
models to be close to each other. Finally, there exists large body of work on multi-task learning in
the Bayesian setting, where a shared prior is used to connect or related the various tasks [5, 22, 16],
while other works [17, 21, 9] are using Gaussian process predictors.

The work most similar to our is of Crammer et al. [11, 10] whom developed theory for learning a
model with few datasets from various tasks, assuming they are sampled from the same source. They
assumed that the relative error (or a bound over it) is known, and proved generalization bound for
that task, their bounds proposed to use some of the datasets, but not all, when building a model for
the main task. Yet, it was performed before seeing the data and having the strong assumption of the
discrepancy between tasks. We do not assume this knowledge and learn few tasks simultaneously.

2 Model

There is a set T of T tasks and with each task t there is an associated distribution Dt over inputs
(x, y), where x ∈ Rr and y ∈ Y . We assume binary classification tasks, i.e., Y = {+1,−1}. For
each task t ∈ T has a sample of size nt denoted by St = {(xt,i, yt,i, t)}nt

i=1 drawn from Dt, where
xt,i ∈ Rr is the i-th example in the t-th domain and yt,i ∈ Y is the corresponding label. (Note
that the name of the domain is part of the example, so there is no uncertainty regarding from which
domain the example originated from.)

A k-shared task classifier is a pair (Hk, g), where Hk = {h1, . . . , hk} ⊂ H is a set of k hypotheses
from a class of functions H = {h : Rr → Y}. The function g maps each task t ∈ T to the
hypotheses pool Hk, where the mapping is to a single hypothesis (hard association). We denote by
K = {1, . . . , k} the index set for Hk.
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In the hard k-shared task classifier, g maps each task t ∈ T to one hypothesis in hi ∈ Hk, i.e., g :
T → K. Classifier (Hk, g), given an example (x, t), first computes the mapping from the domain
name t to the hypotheses hi, where i = g(t), and then predicts using the corresponding function hi,
i.e., the prediction is hg(t)(x). The class of hard k-shared task classifiers using hypotheses class H
includes all such (Hk, g) classifiers, i.e., fHk,g : Rr × T → Y , where fHk,g(x, t) = hg(t)(x), and
the class is FH,k = {fHk,g : |Hk| = k,Hk ⊂ H, g : T → K}.

3 Hard k-shared Task Classifiers: Generalization Bounds

We envision the following learning process. Given the training sets St, for t ∈ T , the learner
outputs at the end of the training phase both Hk and g, where Hk is composed from k hypotheses
h1, . . . , hk ∈ H and g : T → K. Naturally, this implies that there is potentially overfitting in both
the selection of Hk and the mapping g.

Our main goal in this section is to bound the VC dimension of the resulting hypothesis class FH,k,
assuming the VC dimension of H is d. We show that the VC dimension of FH,k is at most
O(T log k + kd log(Tkd)) and at least Ω(T log k + dk).
Theorem 1. For any hypothesis classH of VC-dimension d, the class of hard k-shared task classi-
fiers FH,k has VC dimension at most the minimum between dT and O(T log k + kd log(Tkd)).

Proof: Our main goal is to derive an upper bound on the number of possible labeling using a hard
k-shared task classifiers FH,k. Once we establish this, we can use Sauer lemma to derive an upper
bound on the VC dimension [3]. Let Φd(m) =

∑d
j=0

(
m
j

)
be an upper bound on the number of

labeling over m examples using a hypothesis class of VC dimension d. Let m =
∑

t∈T nt the total
sample size.

We consider all mapping g of the T tasks to Hk, there are kT such mappings. Fix a particular
mapping g where hypothesis hj has tasks Sj ⊂ T assigned to it. (At this point hj ∈ H is not
fixed yet, we are only fixing g and the tasks that are mapped to the j hypothesis in Hk.) There are
mj =

∑
t∈Sj nt examples for the tasks in Sj , and therefore at most Φd(mj) labeling. (Note that

the labeling are using any h ∈ H.) We can upper bound the numbers of labeling any hypothesis
pool Hk by

∏k
j=1 Φd(mj). Since m =

∑
j mj , this bound is maximized when mj = m/k, and this

implies that the number of labeling is upper bounded by kT (em/dk)dk.

Now we would like to upper bound the VC dimension of FH,k. When m is equal to the VC dimen-
sion we have 2m different labeling induced on the m points. Hence, it has to be the case that,

2m ≤ kT
(em
dk

)kd
.

We need to find the largestm for whichm ≤ kd log(em/dk)+T log k ≤ T log k+kd log(e/dk)+
kd logm ≤ T log k + kd logm for dk ≥ 3. Note that for α ≥ 2 and β ≥ 1, we have that if
m < α+ β log(m) then m < α+ 16β log(αβ). This implies that

m ≤ T log k + 16kd log(Tdk log k) = O (T log k + kd log(Tkd)) ,

which derives an upper bound on the number of points that can be shattered, and hence the VC
dimension.

To show the upper bound of dT , we simply let each domain select a separate hypothesis from H.
Since H has VC dimension d, there are at most d examples that can be shattered in each task, for a
total of dT .

As an immediate corollary we can derive the following generalization bound, using the standard VC
dimension generalization bounds [3]. For simplicity we assume that the distribution over the tasks
is uniform, we define the true error as e(fHk,g) = Pr(x,y,t)[fHk,g(x) 6= y], and the empirical (or
training) error as

ê(fHk,g) =

∑T
t=1

∑nt

i=1 I[fHk,g(xt,i) 6= yt,i]

m
, (1)

where m =
∑

t nt is the sample size, and I(a) = 1 iff the predicate a is true. We can now state the
following corollary, which follows from standard generalization bounds,
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Input parameters: k - number of models to use, N - number of iterations, η - fraction of data for split
Initialize:

• Set random partition S1
t ∪ S2

t = St where S1
t ∩ S2

t = ∅ and |S1
t |/|St| = η for t = 1 . . . T

• Set g(t) = Jt where Jt is drawn uniform from {1...k}
For i = 1, . . . , N

1. Set hj ← learn(∪t∈IjS
1
t ,H) where Ij = {i : g(i) = j}.

2. Set g(t) = argmink
j=1

1
|S2

t |

∑
(x,y)∈S2

t
I[hj(x) 6= y].

Set hj ← learn(∪t∈IjSt,H) where Ij = {i : g(i) = j}.

Output: fHk,g(x) where Hk = {h1, . . . , hk}

Figure 1: The SHAMO algorithm for learning shared models.

Corollary 2. Fix k. For any hypothesis class H of VC-dimension d, for any hard k-shared task
classifier f = (Hk, g) we have that with probability 1− δ,

|e(f)− ê(f)| = O

(√
(T log k + kd log(Tkd)) log(m/T ) + log 1/δ

m

)
.

The previous corollary holds for some fixed k known before observing the training data, we now
state a bound where k is chosen after seeing the data, together with g and Hk. The proof follows
from the previous corollary and performing a union bound on the different values of k,
Corollary 3. For any hypothesis class H of VC-dimension d, for any k, for any hard k-shared task
classifier f = (Hk, g) we have that with probability 1− δ,

|e(f)− ê(f)| = O

(√
(T log k + kd log(Tkd)) log(m/T ) + log(k/δ)

m

)
.

The last two bounds state that empirical error is close to true error under two conditions, first that
T log k is small in compared with m =

∑
t nt. That is, the average number of examples (per task),

should be large compared to the log-number-of models. Thus, even with a dozen models, only few
tens of examples are suffice. Second, that kd is small compared withm. The main point is that if the
VC dimension is large and the average number of examplesm/T is low, it is possible to compensate
if the number of models k is small relative to the number of tasks T . Hence, we expect to improve
performance over individual models if there are many-tasks, yet we predict with relative few models.

We now show that our upper bound on the VC dimension is almost tight.
Theorem 4. There is a hypothesis classH of VC-dimension d, such that the class of hard k-shared
task FH,k has VC dimension at least max{kd , T min{d, log k}}.

Proof: To show the lower bound of kd consider d points that H shatters, x1, . . . ,xd. Consider the
set of examples S = {(xi, j) : 1 ≤ j ≤ k, 1 ≤ i ≤ d}. For any labeling of S, we can select for
each domain j a different hypothesis from H that agrees with the labeling. Since we have only k
different js, we can do it with k functions. Therefore we shatter S and have a lower bound on kd.

Let ` = min{d, log k}, hence the second bound is T`. Since class H is of VC dimension d, this
implies that there are points x1, . . . , x` and function h1, . . . hk ∈ H, such that for any labeling of
xi’s there is a hypothesis hj which is consistent with it. (Since k hypotheses can shatter at most
log k points, we get the dependency on log k.) Let the sample be S = {(xi, t) : 1 ≤ i ≤ `, t ∈ T }.
For any labeling of S, when we consider domain t ∈ T , there is a function in hi ∈ Hk which is
consistent with the labeling. Therefore the VC dimension is at least T`.

4 Learning with SHAred MOdels (SHAMO) Algorithm

The generalization bound states that we should find a pair (Hk, g) that perform well on the training
data and that k would be small a-priori. We assume that there is a learning algorithm fromH called

4



−6 −4 −2 0 2 4

−10

−8

−6

−4

−2

0

2

4

6

(a) Data Synthetic I

2 4 6 8 10 12 14
0

10

20

30

40

50

No Models ( K )

A
ve

ar
ge

 E
rr

or

 

 

2 4 6 8 10 12 14
2

4

E
ffe

ct
iv

e 
N

o.
 M

od
el

s

Shared
Individual
SHAMO

(b) Error I

0 20 40 60 80 100
0

10

20

30

40

No Models ( K )

A
ve

ar
ge

 E
rr

or

 

 

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

E
ffe

ct
iv

e 
N

o.
 M

od
el

s

Shared
Individual
SHAMO

(c) Error II

Figure 2: Left: Illustration of data used in the first experiment. The middle (experiment I) and right
(experiment II) panels shows the average error vs k for the three algorithms, and the “effective”
number of models vs k (right axis).

with a training set S. Formally, we assume that the hypothesis returned by ĥ ← learn(S,H) has
lowest training error, that is the algorithm performs empirical risk minimization. We propose to
perform an iterative procedure, between two stages, which intuitively is similar to K-means.

In the first stage, the algorithm fixes the assignment function g and find the best k functionsHk. This
can be performed easily by calling k times any algorithm that learns with the hypothesis classH. On
each call the union of the training sets that are assigned by g the same value is fed into the algorithm.
Formally, for all j = 1 . . . k set, hj ← learn(∪t∈IjSt,H) where Ij = {i : g(i) = j}. In the sec-
ond stage we learn the association g givenHk. Here we simply set g(t) to be the model which attains
the lowest error evaluated on the training set, that is, g(t) = arg mink

j=1
1
nt

∑nt

i=1 I[hj(xt,i) 6= yt,i] .

This procedure can be repeated for a fixed number of iterations, or until a convergence criteria is
met. Specifically, in the experiments below our algorithm iterated between the step exactly 10 times.
Clearly, each stage reduces the training error of (1), but how far the resulting hypotheses from the
optimal one is not clear.

In the description above the training sets St was used twice, once for finding Hk and once for
finding g. We found in practice that this leads to over-fitting, that is, in the second stage sub-
optimal hypotheses are assigned to g if evaluated on the test set (which clearly is not known during
training time.) We thus modify the algorithm above, and use only part of the training set for each
of the tasks, where these parts not over overlapping. Formally, before performing the iterations the
algorithm partitions the training set, into two parts, S1

t ∪ S2
t = St where S1

t ∩ S2
t = ∅. Then the

first stage is performed by calling the learning procedure with the first set and the second with the
second set. Only after iterations are concluded, we use the entire training set to build models, with
out modifying the association function g. We call this algorithm SHAMO for learning with shared
models. The algorithm is summarized in the Fig. 1.

5 Empirical Study

We evaluated our algorithm on both synthetic and real-world sentiment classification task. Training
was performed using the averaged-Perceptron [14] executed for 10 iterations. Three methods are
evaluated, learning one model per task, called Individual below, learning one model for all tasks
called Shared below, and learning k models using our algorithm, SHAMO. We also implemented an
online version of a batch algorithm for this setting [4]. SHAMO was outperformed it in the majority
of experiments. Full details will be included in a long version of this paper.

Synthetic Data: We first report results using synthetic data. We generated 20 dimensional in-
puts x ∈ R20. All features were drawn from Gaussian with mean zero. The first two inputs of
tasks t were drawn with a covariance specific for that tasks. The remaining 18 features were with
isotropic covariance. The label of input x = (x1, x2, ..., x20) was set to be sign(x2 · st) where
st ∈ {−1,+1} with probability half. We generated T = 200 such tasks each with 6 training ex-
amples (with at least one example from each class), and ran our algorithm for various values of k.
Models were evaluated on tests sets of size n = 1, 000 for each task. The results below are averages
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over 50 random repetitions of the data generation process. Plot of test set (with T = 9 for ease of
presentation) appear in the left-panel of Fig. 2, clearly two models are enough to classify all tasks
correctly (depending on the value of st above), and furthermore, applying the wrong model yields
test error of 100%. All 6 examples were used both to build models and associating models to tasks.
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(b) Error vs. k

Figure 3: Results for Data A (31
Tasks, 1 Thresh)

The results are summarized in middle panel of Fig. 2, in which
we plot mean error of the three algorithms vs the number of
models k, with error bars for 95% confidence interval. Since
both Individual and Shared are independent of k, the line is
flat for them. It is clear that Shared performs worst with an
average error of 50% (highest line), which is explained by the
fact that the test error of half of the models over the other
half of the data-sets is about 100%. Individual performs sec-
ond, with test error of about 30% obtained by only 6 training
examples. Our algorithm, SHAMO, performs the best with
error of about 5% when allowing k = 2 models, and about
10% when allowing k = 14 models. The dotted-black line
indicates the number of “effective” models per value of k,
which is the smallest number of models which at least 90 tasks
are associated with (exactly) one of them. The corresponding
scale is the right axis. Indeed as the number of possible mod-
els k is increased to 14, the number of effective models is also
increased, but only moderately, from an average of 2 to an av-
erage of 3.5. In other words, only small number of models are
used in practice, which avoids severe overfitting.

The next synthetic experiment was performed with 10 target
models and more noise. Here, we generated 40 dimensional
inputs x ∈ R40. All features were drawn from Gaussian with
mean zero. The first ten inputs of tasks t were drawn with a
covariance specific for that tasks. The remaining 30 features

were with isotropic covariance. The label of input x = (x1, x2, ...x40) was set to be sign(ut ·
(x1 . . . x10)) where ut ∈ R10 are a set of 10 orthogonal vectors, chosen uniformly in random. As
in the first experiment, we generated T = 200 such tasks, each with 25 training examples, and ran
SHAMO with values of k ranging between 2 and 100. Models were evaluated on tests sets of size
n = 1, 000 for each task. The results below are averages over 50 random repetitions of the data
generation process. In these experiments ten models are enough to classify all tasks correctly, yet in
this experiment, applying the wrong model yields test error of only 50%. Out of the 25 examples
available for each task, 7 were used to build models, and the remaining 18 were used to associate
models to tasks (η=7/25). Lower values cause overfitting, while higher values yield poor models.

The results are summarized in right panel of Fig. 2, in which we plot mean error of the three algo-
rithms vs the number of models k, with error bars for 95% confidence interval. The bottom line is
similar to the previous experiment. As before, Shared performs worst, Individual performs second,
with test error of about performing second with about 15% obtained with 25 training examples. Our
algorithm, SHAMO, performs the best with error of about 11% when allowing k = 22 models, twice
the number of real models. Additionally, it seems that the algorithm was not-overfitting, even when
the number of allowed models was set to 100 the performance was the same as setting k = 25.
One possible explanation is that the algorithm is not using all allowed models, indeed the number
of “effective” models (which are associated to 90% of the tasks) grows moderately for number of
models greater than 25 (from 14 to 16). In other words, if we allow the algorithm to remove about
10% of the tasks, then only 14− 16 models are enough to have about 11% test error on average. It
is not clear to us yet, why over-fitting occurred in the first experiment but not in the second.

Sentiment Data: We followed Blitzer et.al [8] and evaluated our algorithm also on product
reviews from Amazon. We downloaded 2, 000 reviews from 31 categories, such as books, dvd
and so on; a total of 62, 000 reviews all together. All reviews were represented using bag-of-
unigrams/bigrams, using only features that appeared at least 5 times in all training sets, yielding
a dictionary of size 28, 775. The reviews we used were originally labeled with 1, 2, 4, 5 stars, as
reviews with 3 stars were very hard to predict, even with very large amount of data.
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(e) Data B, 62 Tasks

2 4 6 8 10 12 14
20

22

24

26

28

30

32

34

36

38

No Models ( K )

A
ve

ar
ge

 E
rr

or

 

 

2 4 6 8 10 12 14
0

2

4

6

8

10

E
ffe

ct
iv

e 
N

o.
 M

od
el

s

Shared
Individual
SHAMO

(f) Data C, 124 Tasks
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(g) Data D, 186 Tasks
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(h) Data E, 248 Tasks

Figure 4: Top: test error of Individual and Shared algorithms vs test error of SHAMO for k = 14, for all
datasets with 2 thresholds. Bottom: average error vs k for the three algorithms, and the “effective” number of
models vs k (right axis).

Data Thresholds No. Tasks Training Size Test Size
A 1 31 220 1,780
B 2 62 108 892
C 2 124 54 446
D 2 186 36 297
E 2 248 27 223
F 3 93 72 592
G 3 186 36 296
H 3 279 24 197
I 3 372 18 148

Table 1: Summary of sentiment datasets used.

We generated three binary predic-
tion datasets as follows. In the
first dataset, the goal was to predict
whether the number of stars associ-
ated with a review is above or be-
low 3. Since we focus in the case
of many tasks with small amount of
data each, we used about 1/9 of the
data for training and the remaining
for evaluation. Each set (training
and test) contains equal amount of

reviews with the 1, 2, 4, 5 stars. The outcome of this process are 31 tasks, each with 220 training
examples and 1, 780 test examples. This dataset is in row A of Table 1.

For the second dataset we partitioned all reviews from each category into two equal sets. The
prediction problem for the first was to predict if the number of stars is 5 stars or not (that is, below
5). For the second set of problems the goal was to predict if the number of stars is 1 or not. The
outcome are 62 tasks with 108 training examples and 892 test examples. We refer to this problem as
having 2 thresholds (5 and 1). This dataset is row B of Table 1. For the third dataset we partitioned
the reviews into three sets, using one of the three goals above - is the number of starts above or
below 1, is it above or below 3, and is it above or below 5 - ending up with 93 tasks with 72 training
examples and 592 test examples in each. We refer to this problem as having 3 thresholds (5, 3 and
1). This dataset is row F in Table 1. Finally, we took each of the last two problems and divided each
task into 2, 3 or 4 - rows C,D,E (2 thresholds) and, rows G,H,I (3 thresholds). Our setting with few
thresholds represent different language usages, from mild to strong, for the same level of sentiment.

Unlike in the synthetic experiments training data was either used for building models, or associating
models to tasks. That is, we set |S1

t | = |S2
t | = 0.5|St| for η = 0.5, and used one half of the examples

to build models (set the weights of prediction functions), and the remaining half to evaluate each of
the k models on the T tasks, and associating models to tasks. Only after this process ended, we fixed
this association and learned models using all training points to build final models.

The results for dataset A of single threshold appear in Fig. 3. The top panel shows the error of In-
dividual and Shared vs SHAMO for k = 14. Points above the line y = x indicate the superiority
of SHAMO. Although we used reviews from 31 domains, there is essentially a single task, and thus
it is best to combine the data. Indeed, all the red-squares (corresponding to Individual) are above
the blue-circles (corresponding to Shared), indicating that the shared model outperforms individ-
ual models. Additionally, all points corresponding to Shared lies on the diagonal, indicating that
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(a) Data F, 93 tasks
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(b) Data G, 186 tasks
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(c) Data H, 279 tasks
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(d) Data I, 372 tasks

Figure 5: Average error vs k for the three algorithms, and the “effective” number of models vs k (right axis).

SHAMO is performing as well as Shared, with error ∼ 16%. The bottom panel shows the perfor-
mance of SHAMO vs. k. As shown, the error is fixed and is not affected by k. This is explained
by the black-dashed-line that, as before, shows the number of “effective” models, which is 1. Even
though the algorithm may choose up to 14 models, it is always using effectively one.

The results for datasets B-E all with two thresholds are summarized in Fig. 4. The top panels show
the test error of Individual and Shared algorithms vs test error of SHAMO for k = 14, with number
of tasks increasing from left to right. First, as opposed to dataset A with single threshold, in all
cases the results for Shared are worse than these of Individual. This gap is getting smaller with the
number of tasks (the clouds are overlapping as we go from left panel to right). intuitively, Shared
introduces (label) bias as the two thresholds are being treated as one, while Individual introduces
variance as smaller and smaller training sets are used, as we go from the left panel to the right one,
the gap between bias and variance shrinks as the variance is increased. SHAMO performs the best
as in all plots almost all the points (less in the right plot) are above the line y = x. Additionally, the
spread of the cloud in the top-panels is getting larger, indicating larger deviation in the performance
across different tasks.

The bottom panels of Fig. 4 shows the average test error vs k. As Shared is not affected by k nor
T (as total training examples remains the same), its test error of 36% is fixed across panels. As
we have more tasks, and less training examples per task, the test error of Individual increases from
25.6% to 28.9% (gap of 3.3%). SHAMO performs the best, and is also affected from smaller dataset,
with test error ranging between 21.8 and 24.3, having a smaller gap than Individual of 2.5%). In all
four dataset the optimal number of models is k = 3, and there is minor overfitting when using larger
values (at most 1%). As before the effective number of models grows weakly with k.

The results for datasets F-I all with three thresholds are summarized in Fig. 5, the general trend
remains the same, and we highlight only the main differences. First, the gap between Individual
and Shared is much smaller, in some tasks one is better, and in other tasks the other is better.
Additionally, for the smallest number of tasks (left) Individual is better with a gap of ∼ 1.5%,
while for largest number of tasks Individual is worse with a gap ranging between 1 − 4%. This
is exactly where the effect of variance of small datasets became stronger than the bias emerging
from sharing. Second, in general these dataset are more heterogeneous, as indicated by the larger
standard-deviation (longer error-bars than in Fig. 4). As before SHAMO performs the best, with
optimal performance when k = 3 − 4 and is almost not overfitting for larger values of k, as the
“effective” number of models grows slowly with k.

Summary

We described theoretical framework for multitask learning using small number of shared models.
Our theory suggests that many-tasks can be used to compensate for small number of training exam-
ples per task, if one can partition that tasks to few sets, with similar labeling function per set. We
also derived a K-means-like algorithm to learn such classifiers of both models and association of
taks and models. Our experimental results on both hand-crafted problems and real-world sentiment
classification problem strongly support the benefits from the approach, even with very few examples
per task. We plan to extend our theory to direct of the optimal splitting of the training data by the
algorithm, analyze its convergence properties and perform extensive experiments. We also plan to
derive theory and algorithms for soft association of tasks to classifiers.

Acknowledgements: The research is partially supported by a grants from ISF, BSF and European
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