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Abstract 
Early stages of sensory systems face the challenge of compressing 
information from numerous receptors onto a much smaller number of 
projection neurons, a so called communication bottleneck. To make more 
efficient use of limited bandwidth, compression may be achieved using 
predictive coding, whereby predictable, or redundant, components of the 
stimulus are removed. In the case of the retina, Srinivasan et al. (1982) 
suggested that feedforward inhibitory connections subtracting a linear 
prediction generated from nearby receptors implement such compression, 
resulting in biphasic center-surround receptive fields. However, feedback 
inhibitory circuits are common in early sensory circuits and furthermore 
their dynamics may be nonlinear. Can such circuits implement predictive 
coding as well? Here, solving the transient dynamics of nonlinear reciprocal 
feedback circuits through analogy to a signal-processing algorithm called 
linearized Bregman iteration we show that nonlinear predictive coding can 
be implemented in an inhibitory feedback circuit. In response to a step 
stimulus, interneuron activity in time constructs progressively less sparse 
but more accurate representations of the stimulus, a temporally evolving 
prediction. This analysis provides a powerful theoretical framework to 
interpret and understand the dynamics of early sensory processing in a 
variety of physiological experiments and yields novel predictions regarding 
the relation between activity and stimulus statistics. 

 

1  Introduction 
Receptor neurons in early sensory systems are more numerous than the projection 

neurons that transmit sensory information to higher brain areas, implying that sensory 
signals must be compressed to pass through a limited bandwidth channel known as 
“Barlow’s bottleneck” [1]. Since natural signals arise from physical objects, which are 
contiguous in space and time, they are highly spatially and temporally correlated [2-4]. Such 
signals are ideally suited for predictive coding, a compression strategy borrowed from 
engineering whereby redundant, or predictable components of the signal are subtracted and 
only the residual is transmitted [5]. 

Consider, for example, the processing of natural images in the retina. Instead of 
transmitting photoreceptor signals, which are highly correlated in space and time, ganglion 
cells can transmit differences in signal between nearby pixels or consecutive time points. 
The seminal work of Srinivasan et al. introduced predictive coding to neuroscience, 
proposing that feedforward inhibition could implement predictive coding by subtracting a 
prediction for the activity of a given photoreceptor generated from the activity of nearby 
receptors [6]. Indeed, the well known center surround spatial receptive fields or biphasic 
temporal receptive fields of ganglion cells [7] may be viewed as evidence of predictive 
coding because they effectively code such differences [6, 8-10]. Although the Srinivasan et 



al. model captured the essence of predictive coding it does not reflect two important 
biological facts. First, in the retina, and other early sensory systems, inhibition has a 
significant feedback component [11-13]. Second, interneuron transfer functions are often 
non-linear [14-16]. 

Here, we demonstrate that feedback circuits can be viewed as implementing predictive 
coding. Surprisingly, by taking advantage of recent developments in applied mathematics and 
signal processing we are able to solve the non-linear recurrent dynamics of such a circuit, for an 
arbitrary number of sensory channels and interneurons, allowing us to address in detail the circuit 
dynamics and consequently the temporal and stimulus dependencies. Moreover, introducing non-
linear feedback dramatically changes the nature of predictions. Instead of a static relation 
between stimulus and prediction, we find that the prediction becomes both stimulus and time 
dependent.  

2  Model  
2 .1  Dynam ics  o f  the  l inear  s ing le -channe l  f eedback  c ircu i t  

We start by considering predictive coding in feedback circuits, where principal neurons are 
reciprocally connected with inhibitory interneuron forming a negative feedback loop. Much of the 
intuition can be developed from linear circuits and we start from this point. Consider a negative 
feedback circuit composed of a single principal neuron, p, and a single interneuron, n (Fig. 1a). 
Assuming that both types of neurons are linear first-order elements, their dynamics are given by: 
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where gm is the membrane conductance (inverse of membrane resistance), Cm the membrane 
capacitance, gs synaptic conductance and the subscript designates the neuron class (principal and 
interneuron) and w in the second equation is the weight of the synapse from the principal neuron 
to the interneuron. For simplicity, we assumed that the weight of the synapse from the interneuron 
to the principal neuron is the same in magnitude but with negative sign, -w. Although we do not 
necessarily expect the brain to fully reconstruct the stimulus on the receiving side, we must still 
ensure that the transmitted signal is decodable. To guarantee that this is the case, the prediction 
made by the interneuron must be strictly causal. In other words, there must be a delay between the 
input to the interneurons, !"(!), and the output of the interneurons, !(! + !). Given that feedback 
requires signals passing through a synapse, such delay is biologically plausible. When discussing 
analytical solutions below, we assume that ! → 0 to avoid clutter and do not explicitly indicate the 
time dependence of the vectors p, s, and n. By rearranging the terms in Eq. 1 we obtain: 
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where τ=RC  is the membrane time constant. Since principal neurons should be able to transmit 
fast changes in the stimuli, we assume that the time constant of the principal cells is small 
compared to that of the interneurons. Therefore, we can assume that the first equation reaches 
equilibrium instantaneously: 

         ! = ! ! − !"  
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= −! + !!! !!! !" ,                                         (3) 

where we defined ! = !!! !!!. As the purpose of interneuron integration will be to construct 
stimulus representation, the integration time should be on the order of the auto-correlation time in 
the stimulus. Since here we study the simplified case of the semi-infinite step-stimulus, the time 
constant of the neuron should approach infinity. We assume this occurs by the interneurons having 
a very large membrane resistance (or correspondingly a very small conductance) and moderate 
capacitance. Therefore, the leakage term, -n, which is the only term in the second line of Eq. 3 that 



doesn’t grow with the membrane resistance, can be neglected in the dynamics of interneurons. By 
this assumption and substituting the first equation into the second, we find: 

    ! = ! ! − !"  
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= !!! !!! !" ! − !" .            (4) 

Defining the effective time constant ! = !!!!!! ! we have: 

               
! = ! ! − !"
! !!
!"
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In response to a step stimulus: !(!)   = ! ! !, where !(!) is the Heavyside function, the dynamics 
of equation 5 are straightforward to solve, yielding:  

              
! ! =    !

!
  θ !    1  –   exp −!! !

!
!       

! ! = !"  θ ! exp −!! !
!
!                                 

                (6) 

The interneuron’s activity, n(t), grows with time as it integrates the output of the principal 
neuron, p(t), Fig. 1a. In turn, the principal neuron’s output, p(t), is the difference between the 
incoming stimulus and the interneuron’s activity, n(t), i.e. a residual, which decays with time from 
the onset of the stimulus. In the limit considered here (infinite interneuron time constant), the 
interneuron’s feedback will approach the incoming stimulus and the residual will decay to zero. 
To summarize, one can view the interneuron’s activity as a series of progressively more accurate 
predictions of the stimulus. The principal neuron subtracts these predictions and sends the series of 
residuals to higher brain areas, a more efficient approach than direct transmission (Fig. 1a). 

                           
Figure 1 Schematic view of early processing in a single sensory channel in response to a 
step stimulus. a. A predictive coding model consists of a coding circuit, transmission channel 
and, for theoretical analysis only, a virtual decoding circuit. Coding is performed in a negative 
feedback circuit containing a principal neuron, p, and an inhibitory interneuron, n. In response 
to a step-stimulus (top left) the interneuron charges up with time (top right) till it reaches the 
value of the stimulus. Principal neuron (middle left) transmits the difference between the 
interneuron activity and the stimulus, resulting in a transient signal. b. Direct transmission. 

The transient response to a step stimulus (Fig. 1a left) is consistent with electrophysiological 
measurements from principal neurons in invertebrate and vertebrate retina [10, 17]. For example, 
in flies, cells post-synaptic to photoreceptors (the LMCs) have graded potential response 
consistent with Equation 5. In the vertebrate retina, most recordings are performed on ganglion 
cells, which read out signals from bipolar cells. In response to a step-stimulus the firing rate of 
ganglion cells is consistent with Equation 6 [17]. 

2 .2  Dynam ics  o f  the  l inear  m ul t i - channe l  f eedback  c ircu i t  
In most sensory systems, stimuli are transmitted along multiple parallel sensory channels, 

such as mitral cells in the olfactory bulb, or bipolar cells in the retina. Although a circuit could 
implement predictive coding by replicating the negative feedback loop in each channel, this 
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solution is likely suboptimal due to the contiguous nature of objects in space, which often results 
in stimuli correlated across different channels. Therefore, interneurons that combine inputs across 
channels may generate an accurate prediction more rapidly. The dynamics of a multichannel linear 
negative feedback circuit are given by: 

    
! = ! −!"
! !!
!"
=!!! ,                                   (7) 

where boldface lowercase letters are column vectors representing stimulus,   ! = (!!, !!, !!,… )! ,   
activity of principal neurons, !, and interneurons,   !, Fig. 2a. Boldface uppercase letters designate 
synaptic weight matrices. Synaptic weights from principal neurons to interneurons are !!, and 
synaptic weights from interneurons to principal neurons are, for simplicity, symmetric but with the 
negative sign, −! . Such symmetry was suggested for olfactory bulb, considering dendro-
dendritic synapses [18]. Each column of ! contains the weights of synapses from correlated 
principal neurons to a given interneuron, thus defining that interneuron’s feature vector (Fig. 2b). 

Linear dynamics of the feedback circuit in response to a multi-dimensional step stimulus can 
be solved in the standard manner similarly to equation 6:  
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!
! !!!                                            
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            (8) 

provided !!! is invertible. When the matrix !!! is not full rank, for instance if the number of 
interneurons exceeds the number of sensory channels, the solution of Equation 7 is given by: 
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!
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            (9) 

Recapitulating the equations in words, as above one can view the interneurons’ activity as a series 
of progressively more accurate stimulus predictions, ! =!". The principal neuron sends the 
series of residuals of these predictions, ! = ! − !, to higher brain areas, and the dynamics result in 
the transmitted residual decreasing in time [19-22] (Fig. 2c,d). 

2 .3  Dynam ics  o f  the  non- l inear  m ul t i - channe l  f eedback  c ircu i t  
Our solution of the circuit dynamics in the previous sub-section relied on the assumption that 

neurons act as linear elements, which in view of non-linearities in real neurons, represents a 
drastic simplification. We now extend this analysis to the non-linear circuit. A typical neural 
response non-linearity is the existence of a non-zero input threshold below which neurons do not 
respond. A pair of such on- and off- neurons is described by a threshold function (Fig. 2e) that has 
a “gap” or “deadzone” around zero activity and is not equivalent to a linear neuron: 

         Thresh ! =
! − !, ! > !
0, ! ≤ !

! + !, ! < −!
           (10) 

Accordingly, the dynamics are given by: 

         
! = ! −!"              
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=!!!                

! = Thresh!(!)
,                (11) 

The central contribution of this paper is an analysis of predictive coding in a feedback circuit 
with threshold-linear interneurons inspired by the equivalence of the network dynamics to a 
signal-processing algorithm called linearized Bregman iteration [23, 24]. Before showing the 
equivalence, we first describe linearized Bregman iteration. This algorithm constructs a faithful 
representation of an input as a linear sum over dictionary elements while minimizing the L1-L2 
norm of the representation [25]. Formally, the problem is defined as follows:  



                for  ! ! ≡ ! |! |! +
!
!!
| !| !!,min! !(!)   !. !.!" = !.        (12) 

Remarkably, this high-dimensional non-linear optimization problem can be solved by a simple 
iterative scheme (see Appendix): 

   !!!! = !! + !!! ! −!!!

!!!! = Thresh! !!!!                       
,           (13) 

combining a linear step, which looks like gradient descent on the representation error, and a 
component-wise threshold-linear step. 

Eq. 11, the network dynamics, is the continuous version of linearized Bregman iteration, Eq. 
13. Intuitively speaking, the dynamics of the network play the role of the iterations in the 
algorithm. Having identified this equivalence, we are able to both solve and interpret the transient 
non-linear dynamics (see supplementary materials for further details). The analytical solution 
allows us a deeper understanding, for instance of the convergence of the algorithm. We note that if 
the interneuron feature vectors span the stimulus space the steady-state activity will be zero for 
any stimulus and thus non-informative. Therefore, solving the transient dynamics, as opposed to 
just the steady-state activity [18, 19, 21, 26], was particularly crucial in this case. 

Next, we describe in words the mathematical expressions for the response of the feedback 
circuit to a step-stimulus (see Supplement for dynamics equations), Fig. 2f-g. Unlike in the linear 
circuit, interneurons do not inhibit principal neurons until their internal activity crosses threshold, 
Fig. 2f. Therefore, their internal activity initially grows with a rate proportional to the projection 
of the sensory stimulus on their feature vectors, !!!. With time, interneurons cross threshold and 
contribute to the stimulus representation, thereby constructing a more accurate representation of 
the stimulus, Fig. 2f,g. The first interneuron to cross threshold is the one for which the projection 
of the sensory stimulus on its feature vector, !!! is highest. As its contribution is subtracted from 
the activity of the principal neurons, the driving force on other interneurons !!(! −!") 
changes. Therefore, the order by which interneurons cross threshold depends also on the 
correlation between the feature vectors, Fig. 2b,f. 

 
Figure 2. Predictive coding in a feedback circuit in response to a step stimulus at time 
zero. a. Circuit diagram for feedback circuit. b. Stimulus (grayscale in black box left) and a 
subset of interneuron’s feature vector (grayscale in boxes). c-d. Response of linear feedback 
circuit to a step stimulus at time zero in interneurons (c) and principal neurons (d). e. Threshold-
linear transfer function relating internal, n, and external, a, activity of interneurons. Dashed line 
shows diagonal. Firing rates cannot be negative and therefore the threshold-linear function 
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should be thought as combining a pair of on and off-cells. f-h. Response of interneurons (f-g) 
and principal neurons to a step stimulus at time zero. f. Expanded view of internal activity of the 
interneurons (only some are shown, see grayscale in boxes color coded to match b) at early 
times. g. External activity of a larger subset of interneurons over a longer time period. Grayscale 
boxes show the stimulus represented by the interneuron layer at various times marked by 
arrows. h. Principal neuron activity as a function of time. As interneurons cross threshold they 
more closely represent the stimulus and cancel out more of the principal cell activity. 
Eventually, the interneuron representation (right box in g) is nearly identical to the stimulus and 
the principal neurons’ activity drops almost to zero. 

Collectively the representation progresses from sparse to dense, but individual interneurons may 
first be active then become silent. Eventually interneurons will accurately represent the input with 
their activity, ! =!", and will fully subtract it from the principal cells’ activity, resulting in no 
further excitation to the interneurons, Fig. 2g,h. 

However, this description leads to an immediate puzzle. Namely, the algorithm builds a 
representation of the stimulus by the activity of interneurons. Yet, interneurons are local circuit 
elements whose activity is not transmitted outside the circuit. Why would a representation be built 
if it is available only locally within the neural circuit? The answer to this conundrum is found by 
considering the notion of predictive coding in early sensory circuits presented in the introduction. 
The interneurons serve as the predictor and the principal neurons transmit a prediction residual. 

As expected by the framework of predictive coding, at each point in time, the circuit subtracts 
the prediction, ! =!", which was constructed in the interneurons from previous incoming 
sensory signals, from the current sensory stimulus and the principal neurons transmit the residual, 
! = ! − !, to higher brain areas. We note that initially the interneurons are silent and the principal 
neurons transmit the stimulus directly. If there were no bandwidth limitation, the stimulus could 
be decoded just from this initial transmission. However, the bandwidth limitation results in coarse, 
or noisy, principal neuron transmission, an issue we will return to later.  

3 Results  
In neuroscience, the predictive coding strategy was originally suggested to allow efficient 

transmission through a limited bandwidth channel (Srinivasan et al., 1982). Our main result is the 
solution of the transient dynamics given in the section above. Understanding circuit dynamics in 
the predictive coding framework allows us to make a prediction regarding the length of transient 
activity for different types of stimuli. Recall that the time from stimulus onset to cancellation of 
the stimulus depends on the rate of the interneurons’ activation, which in turn is proportional to 
the projection of the stimulus on the interneurons’ feature vectors. Presumably, interneuron feature 
vectors are adapted to the most common stimuli, e.g. natural images in the case of the retina, 
therefore this type of stimulus should be relatively quickly cancelled out. In contrast, non-natural 
stimuli, like white noise patterns, will be less well captured by interneuron receptive fields and 
their activation will occur after a longer delay. Accordingly, it will take longer to cancel out non-
natural stimuli, leading to longer principal neuron transients. 

Below, we show that the feedback circuit with threshold-linear neurons is indeed more 
efficient than the existing alternatives. We first consider a scenario in which effective bandwidth 
limitation is imposed through addition of noise. Secondly, we consider a more biologically 
relevant model, where transmission bandwidth is set by the discreteness of Poisson neural activity.  

We find that threshold linear interneurons achieve more accurate predictions when faced with 
stimulus corrupted with i.i.d Gaussian noise. The intuition behind this result is that of sparse 
denoising [23]. Namely, if the signal can be expressed as a sparse sum of strong activation of 
dictionary elements, whereas the noise requires a large number of weakly activated elements, then 
thresholding the elements will suppress the noise more than the signal, yielding denoising. We 
note that this fact alone does not in itself argue for the biological plausibility of this network, but 
threshold-linear dynamics are a common approximation in neural networks. 

 



 
Figure 3. Predictions by negative feedback circuit. Left: Relative prediction error ( ! − ! !/
! !), where ! =!", as a function of time for a stimulus consisting of an image patch 

corrupted by i.i.d Gaussian noise at every time point. Right: An image is sent through principal 
neurons that transmit Poisson. The reconstruction error as a function of time following the 
presentation of stimulus is shown for the full non-linear negative feedback circuit (black), for a 
linear negative feedback circuit (red), for a direct transmission circuit (blue), and for a circuit 
where the sparse approximation itself is transmitted instead of the residual (green). Time on the 
x-axis is measured in units of the time length in which a single noisy transmission occurs. Inset 
shows log-log plot. 

In addition to considering transmission of stimuli corrupted by Gaussian noise, we also 
studied a different model where bandwidth limitation is set by the discreteness of spiking, 
modeled by a Poisson process. Although the discreteness of transmission can be overcome by 
averaging over time, this comes at the cost of longer perceptual delays, or lower transmission 
rates, as longer integration takes place. Therefore, we characterize transmission efficiency by 
reconstruction error as a function of time, Fig. 3. We find that, for Poisson transmission, predictive 
coding provides more accurate stimulus reconstruction than direct transmission for all times but 
the brief interval until the first interneuron has crossed threshold (Fig. 3). 

4 Discussion 
By solving the dynamics of the negative feedback circuit through equivalence to 

linearized Bregman iteration we have shown that the development of activity in a simplified 
early sensory circuit can be viewed as implementing an efficient, non-linear, intrinsically 
parallel algorithm for predictive coding. Our study maps the steps of the algorithm onto 
specific neuronal substrates, providing a solid theoretical framework for understanding 
physiological experiments on early sensory processing as well as experimentally testing 
predictive coding ideas on a finer, more quantitative level. 

Recently, sparse representations were studied in a single-layer circuit with lateral 
inhibitory connections proposed as a model of a different brain area, namely primary cortical 
areas. The circuit constructs the stimulus representation in the projection neurons themselves 
and directly transmits it downstream [27, 28]. We believe it does not model early sensory 
systems as well as the negative feedback circuit for a number of reasons. First, anatomical 
data is more consistent with the reciprocally connected interneuron layer than lateral 
connections between principal neurons [11, 13]. Second, direct transmission of the 
representation would result in greater perceptual delays after stimulus onset since no 
information is transmitted while the representation is being built up in the sub-threshold 
range. In contrast, in the predictive coding model the projection neurons pass forth (a coarse 
and possibly noisy version of) the input stimulus from the very beginning. We note that 
adding a nonlinearity on the principal neurons would result in a delay in transmission in both 
models. Although there is no biological justification for introducing a threshold to 
interneurons only, the availability of an analytically solvable model justifies this abstraction. 
Dynamics of a circuit with threshold on principal neurons will be explored elsewhere. 

From a computational point of view there are three main advantages to 
overcompleteness in the negative feedback circuit. First, the delay until subtraction of 



prediction, which occurs when the first interneuron crosses threshold, will be briefer as the 
number of feature vectors grows since the maximal projection of the stimulus on the 
interneurons’ feature vectors will be higher. Second, the larger the number of feature vectors 
the fewer the number of interneurons with supra-threshold activity, which may be 
energetically more efficient. Third, if stimuli come from different statistical ensembles, it 
could be advantageous to have feature vectors tailored to the different stimulus ensembles, 
which may result in more feature vectors, i.e., interneurons than principle neurons. 

Our study considered responses to step-like stimuli. If the sensory environment changes 
on slow time scales, a series of step-like responses may be taken as an approximation to the 
true signal. Naturally, the extension of our framework to fully time-varying stimuli is an 
important research direction. 
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Appendix: Derivation of linearized Bregman iteration 
Here, inspired by [22,23], we solve the following basis pursuit-like optimization problem: 
For  ! ! ≡ ! |! |! +

!
!!
| !| !!,min! !(!)   !. !.!" = !.             (A1) 

The idea behind linearized Bregman iteration, is to start with !! = 0 and, at each iteration, to seek 
to update a so as to minimize the square error plus the distance from the previous value of a. Thus, 
we perform the following update: 
!!!! = argmin! !!

!! !,!! + !
!
| ! −!" |!                          (A2) 

where we used a notation !!
! !,!  for the Bregman divergence [29] between the two points a and 

b induced by the convex function J. The Bregman divergence is an appropriate measure for such 
problems that can handle the non-differentiable nature of the cost. It is defined by the following 
expression: !!

! !,! = ! ! − ! ! − !,! − ! , where ! ∈ !"(!)  is an element of the 
subgradient of J at the point b. 
The Bregman divergence for the elastic net cost function J defined in Eq. A1 is: 

!!
!(!,!!) = !| !| ! − ! |!! |! +

!
!!

|! |!! −
!
!!

!! |!! −    !,! − !! ,                             (A3) 

where ! is a subgradient of J at ak . The condition for the minimum in Eq. A2 is: 

! ! |!!!! |! +
!
!!

!!!! |!! ∋ !! +!! ! −!!! ,                         (A4) 

where ! [.] designates a subdifferential. Consistency of the iteration scheme requires that the 
update !!!!  be a subgradient of J as well: 

! ! |!!!! |! +
!
!!

!!!! |!! ∋ !!!!.            (A5) 

By combining Eqs. A4,A5 we set: 
!!!! = !! +!! ! −!!! .                                              (A6) 
By substituting Eq. A6 into Eq. A4 and simplifying we get: 

!!!! = argmin! ! ! ! +
!
!!
| ! − !!!!! |! ,                         (A7) 

which has the explicit solution: 
!!!! = Thresh!"(!!!!!)                                                 (A8) 
By defining  !! = !!! and expressing it in Eqs. A6,A8 with substitution ! = !" we get: 
!!!! = !! + !!! ! −!!!

!!!! = Thresh! !!!!                       
             (A9) 

Eq. A9 is the linearized Bregman iteration algorithm (main text Eq. 13), thereby showing that the 
iterative scheme indeed finds a minimum of Eq. A2 at every time point. The sequence 
convergence proof [23, 24] is beyond the scope of this paper. 
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