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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disortlaracterized by pro-
gressive impairment of memory and other cognitive fundidRegression analy-
sis has been studied to relate neuroimaging measures tiicegtatus. However,
whether these measures have further predictive poweréo éntrajectory of cog-
nitive performance over time is still an under-exploredibyportant topic in AD
research. We propose a novel high-order multi-task legnmiadel to address this
issue. The proposed model explores the temporal correaggisting in imag-
ing and cognitive data by structured sparsity-inducingmerThe sparsity of the
model enables the selection of a small number of imaging areasvhile main-
taining high prediction accuracy. The empirical studiesing the longitudinal
imaging and cognitive data of the ADNI cohort, have yieldedpising results.

1 Introduction

Neuroimaging is a powerful tool for characterizing neumgelgerative process in the progression
of Alzheimer’s disease (AD). Neuroimaging measures haemn lvéidely studied to predict disease
status and/or cognitive performance [1, 2, 3, 4, 5, 6, 7]. Elmv, whether these measures have
further predictive power to infer a trajectory of cognitiperformance over time is still an under-
explored yet important topic in AD research. A simple stygteypically used in longitudinal studies
(e.g, [8]) is to analyze a single summarized value such as avetaggge, rate of change, or slope.
This approach may be inadequate to distinguish the comgigtamics of cognitive trajectories
and thus become unable to identify underlying neurodegginermechanism. Figure 1 shows a
schematic example. Let us look at the plot of Cognitive S@r&he red and blue groups can be
easily separated by their complete trajectories. Howeesn very similar score values at the time
points of t0 and t3, any of the aforementioned summarizadagainay not be sufficient to identify the
group difference. Therefore, if longitudinal cognitivetoomes are available, it would be beneficial
to use the complete information for the identification oex@nt imaging markers [9, 10].

“Data used in preparation of this article were obtained fromAlzheimer's Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.ucla.edu). As suche thvestigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigatocsin be found at: http://adni.loni.ucla.edu/wp-
content/uploads/hovto_apply/ADNI_Acknowledgement.ist.pdf.
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Figure 1: Longitudinal multi-task regression of cognitivajectories on MRl measures.

However, how to identify the temporal imaging features firadict longitudinal outcomes is a chal-
lenging machine learning problem. First, the input datar@sgonse measures often are high-order
tensors, not regular data/label matrix. For example, hgthtineuroimaging measures (sampies
featuresx time) and output cognitive scores (samplescoresx time) are 3D tensors. Thus, itis
not trivial to build the longitudinal learning model for tgor data. Second, the associations between
features and a specific task §.cognitive score) at two consecutive time points are ofterstated.
How to efficiently include such correlations of associasieross time is unclear. Third, some longi-
tudinal learning tasks are often interrelated to each offmrexample, it is well known that [3, 4] in
RAVLT assessment, the total number of words rememberedepadtticipants in the first 5 learning
trials heavily impacts the total number of words which candamlled in the 6th learning trial, and
the results of these two measures both partially deterntiivesfinal recognition rate after 30 minutes
delay. How to integrate such tasks correlations into lardiital learning model is under-explored.

In this paper, we focus on the problem of predicting longitaticognitive trajectories using neu-
roimaging measures. We propose a novel high-order mgkifisature learning approach to iden-
tify longitudinal neuroimaging markers that can accusagekdict cognitive scores over all the time
points. The sparsity-inducing norms are introduced togirete the correlations existing in both
features and tasks. As a result, the selected imaging nsackerfully differentiate the entire lon-
gitudinal trajectory of relevant scores and better captiueeassociations between imaging markers
and cognitive changes over time. Because the structuradigpaducing norms enforce the cor-
relations along two directions of the learned coefficienste, the parameters in different sparsity
norms are tangled together by distinct structures and leaddifficult optimization problem. We
derive an efficient algorithm to solve the proposed higheordulti-task feature learning objective
with closed form solution in each iteration. We further pedtie global convergence of our algo-
rithm. We apply the proposed longitudinal multi-task resgien method to the ADNI cohort. In
our experiments, the proposed method not only achieves etitimp prediction accuracy but also
identifies a small number of imaging markers that are comsistith prior knowledge.

2 High-Order Multi-Task Feature Learning Using Sparsity-I nducing Norms

For AD progression prediction using longitudinal phenatyparkers, the input imaging features
are a set of matrice®’ = {X;, X»,..., X7} € R¥"xT corresponding to the measurements at
T consecutive time points, whepg, is the phenotypic measurements for a certain type of imaging
markers, such as voxel-based morphometry (VBM) markess de¢ails in Section 3) used in this
study, at timet (1 <t <T). Obviously, X is a tensor data witld imaging featuresp subject
samples and’ time points. The output cognitive assessments for the sahtd subjects are a set of
matrices) = {Y1,Ys,...,Yr} € R**<<T for a certain type of the cognitive measurements, such
as RAVLT memory scores (see details in Section 3), at the §asmnsecutive time points. Again,

YV is a tensor data with samples¢ scores, and” time points. Our goal is to learn frofiY’, Y} a
model that can reveal the longitudinal associations batvilee imaging and cognitive trajectories,
by which we expect to better understand how the variatiordgiftdrent regions of human brains
affect the AD progression, such that we can improve the disigrand treatment to the disease.

Prior regression analyses typically study the associati@tween imaging features and cognitive
measures at each time point separately, which is equivedeagsume that the learning tasks,,
cognitive measures, at different time points are independalthough this assumption can sim-
plify the problem and make the solution easier to obtainyédrmoks the temporal correlations of
imaging and cognitive measures. To address this, we prdpge@tly learn a single longitudinal
regression model for the all time points to identify imagimgrkers which are associated to cog-
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Figure 2:Left: visualization of the coefficient tensét learned for the association study on longi-
tudinal dataMiddle : the matrix unfolded fron8 along the first mode (feature dimensioRjght:
the matrix unfolded fron8 along the second mode (task dimension).

nitive patterns. As a result, we aim to learn a coefficienster(a stack of coefficient matrices)
B = {Bi,---,B,} € R¥>*xT asillustrated in the left panel of Figure 2, to reveal theperal
changes of the coefficient matrices. Given the additiomaé tdimension, our problem becomes a
difficult high-order data analysis problem, which we calhégh-order multi-task learning

2.1 Longitudinal Multi-Task Feature Learning

In order to associate the imaging markers and the cogniteasares, the multivariate regression
model was used in traditional association studies, whiatimizes the following objective:

T d
min JO—HB®1)(T_3;H FalBl?= Z||Xt Bi-YilE+a> S IblE )

t=1 t=1 k=1

whereb! denotes thé:-th row of coefficient matrix3; at timet. Apparently, the objective in

Eq. (1) can be decoupled for each individual time point. €Fae it does not take into account the
longitudinal correlations between imaging features arghittve measures. Because our goal in the
association study is to select the imaging markers whicltan@ected to the temporal changes of
all the cognitive measures, tlié groups of regression tasks at different time points shootde
decoupled and have to be performed simultaneously. To \&eltigs, we select imaging markers
correlated to all the cognitive measures at all time poitintroducing the sparse regularization
[11, 12, 13] into the longitudinal data regression and feaselection model as follows:

min JleHXtBt Yt||F+aZ ZkuHrZHXtBt Yilli + o Boyll,, » @

k=1 t=1

where we denotenfoldy, (B) = By € RIx*(1-li-ilit1--In) a5 the unfolding operation to a gen-
eraln-mode tensoB along thek-th mode, and3(;y = unfold, (B) = [By, ..., Br] as illustrated

in the middle panel of Figure 2. By solving the objectiyg the imaging features with common
influences across all the time points for all the cognitivamees will be selected due to the second
term in Eq. (2), which is a tensor extension of the widely usgdnorm for matrix.

2.2 High-Order Multi-Task Correlations

The objective/; in Eqg. (2) couples all the learning tasks together, whicbuth, still does not ad-
dress the correlations among different learning tasksfterdnt time points. As discussed earlier,
during the AD progression, many cognitive measures arergitged together and their effects dur-
ing the process could overlap, thus it is necessary to fudbeelop the objectivd; in Eq. (2) to
leverage the useful information conveyed by the corratatiamong different cognitive measures.
In order to capture the longitudinal patterns of the AD data,consider two types of tasks corre-
lations. First, for an individual cognitive measure, alibb its association to the imaging features
at different stages of the disease could be different, #e@ations patterns at two consecutive time
points tend to be similar [9]. Second, we know that [4, 14]idgithe AD progression, different
cognitive measures are interrelated to each other. Mattiesiig speaking, the above two types of
correlations can both be described by the low ranks of thfficieat matrices unfolded from the



coefficient tensor along different modes. Thus we furtherett® our learning model in Eq. (2) to
impose additional low rank regularizations to exploit néessk correlations.

Let B(z) = unfolds (B) = [BY,..., BY] as illustrated in the right panel of Figure 2, we minimize
the ranks of5;) and B ) to capture the two types of task correlations, one for ego, tgts follows:

T
min Jo = Y ||X{ B = Yil[7 + o|[ By, + 8 ([Bw . + B l.) €)

t=1
where ||-]|, denote the trace norm of a matrix. Given a mathik € R™*™ and its singular

valueso; (1 <4 < min (n,m)), the trace norm of\/ is defined ag|M|, = 3™ nm) o,
1

Tr (MM™)?. It has been shown that [15, 16, 17] the trace-norm is thedmestex approximation
of the rank-norm. Therefore, the third and fourth termgpin Eq. (3) indeed minimize the rank of
the unfolded learning modd&, such that the two types of correlations among the learrasigst at
different time points can be utilized. Due to its capakabtifor both imaging marker selection and
task correlation integration on longitudinal data, we daltlefined in Eq. (3) as the proposdah-
Order Multi-Task Feature Learningnodel, by which we will study the problem of longitudinal dat
analysis to predict cognitive trajectories and identifigvant imaging markers.

2.3 New Optimization Algorithm and Its Global Convergence

Despite its nice properties, our new objectilein Eq. (3) is a non-smooth convex problem. Some
existing methods can solve it, but not efficiently. Thus, histsubsection we will derive a new
efficient algorithm to solve this optimization problem wigfiobal convergence proof, where we
employ an iteratively reweighted method [18] to deal with tton-smooth regularization terms.

Taking the derivative of the objectivg in Eq. (3) with respect td; and set it as 0, we obtain
2X, XI B, — 2X,Y; + 2aDB; + 28 (DBt T Btb) -0, 4)

_ —-1/2 ~
whereD is a diagonal matrix withD (i,i) = ——1——, D = (B(I)B(Tl)) andD =
2

Zalletl;
—-1/2 . .
3 (B(Q)B(Tg)) . We can re-write Eq. (4) as following:

(thf +aD+ /3D) B+ BB:D = XYy | (5)

which is a Sylvester equation and can be solved in closed.férhen the time changes from 1 to

T, we can calculatd, (1 < t < T) by solving Eq. (5). BecausP, D andD are dependent off
and can be seen as latent variables, we propose an iteriforittam to obtain the global optimum
solutions of B; (1 <t < T), which is summarized in Algorithm 1.

Convergence analysis of the new algorithmWe first prove the following two useful lemmas, by
which we will prove the convergence of Algorithm 1.

Lemma 1 Given a constant > 0, for functionf (z) = = — % we havef (z) < f(«) for any
x € R. The equality holds if and only if = «.

The proof of Lemma 1 is obvious and skipped due to space limit.
Lemma 2 Given two semi-positive definite matricésand A, the following inequality holds:
<1 1 <1 1 1 1
tr(A2)—§tr(AA 2)§tr(A2)—§tr(AA z) . (6)

The equality holds if and only it = A.

1|\M||2’1 is a non-smooth function ¥/ and not differentiable when one of its ram’ = 0. Following
[18], we introduce a small perturbatign> 0 to replace|| M|, , by >=; [mi||3 + ¢, which is smooth and

differentiable with respect ta/. Apparently,y", 1/|m?||2 + ¢ is reduced td| M|, , when¢ — 0. In the

sequel of this paper, we implicitly apply this replacementdll ||-[|, ,. Following the same idea, we also

1
introduce a small perturbatigh> 0 to replace|| M ||, by tr (MMT + ¢I)? for the same reason.
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Algorithm 1: A new algorithm to solve the optimization problem in Eq. (3).

Data: X = [X1, X2,..., X7] € RZ*™*T ¥ = [V1,Ys,...,Vp] € R***T,
1. Setg = 1. Initialize Bt(l) € R?X¢ (1 < t < T) using the linear regression results at each individuas fimint.
repeat

1

2. Calculate the diagonal matri(9), where thei-th diagonal element is computed B9 (i, i) = ——o—;
g),k
Ree L N

_1 _1
Ha) _ (9) (9) 2. Aa) _ (9) (9) 2
calculateD (B(l) (B(l)) ) ; calculateD (8(2) (3(2)) ) .
3. UpdateB§g+1) (1 <t < T)by solving the Sylvester equation in Eq. (5).
4.9g=g+ 1.
until Converges
Result B = [B1, Ba, ..., Br] € R¥XexT,

Proof: BecausedA and A are two semi-positive definite matrices and we know the(tA/I) =

r (/IA) , we can derive:

tr (A2 —24? +AA*%) —tr (A*% (A+A— ATAT — A%A%) A*%) -
1 1 N (7)
(17 (0= ) - o (- ) 2.
by which we have the following inequality (A%) —1 (AA*‘) Itr (A%), which is equiv-

alent to Eq. (6) and completes the proof of Lemma 2.
Now we prove the convergence of Algorithm 1, which is sumaetiby the following theorem.

Theorem 1 Algorithm 1 monotonically decreases the objective of thablem in Eq.(3) in each
iteration, and converges to the globally optimal solution.

Proof: In Algorithm 1, we denote the updatd8, in each iteration a$3;. We also denote the

least square loss in theth iteration asc@ = 7 ||XT B! — Y;||%. According to Step 3 of
Algorithm 1 we know that the following inequality holds:

L 4 af:tr (BIDB.) + 5§Tjtr (BIDB:) + 5§Tjtr (B:DBY) <
t=1 t=1 t=1

(8)
T T T
£9+ oyt (BIDB:) + 8w (BIDB:) + 8> tr (B.DB)
t=1 t=1 t=1
Denote the updatet ;) asB(l), and the updatef ,) asB(l), from Eq. (8) we can derive:
£t atr (BlyDBa)) + Bt (BB D) + Bt (B B D) <
)

T r £l
£<g) + aZtr (Ba)DBu)) + thr (B(l)B(I;)D) + /thr (B(Q)B(q;)[))
t=1 t=1 =1

According to the definitions ab, D andD, we have:

d +1),k

ploth | @ S b
2 T k

F=1 /0T (b3

d T (9).k 2 1 1
« _.||b -3 -3
£+ 5> :—ZH b T, By <B<1>B<T1> (B<1>B<T1>) 2) + g” (Bu)Ba) (B<2>B<g>) 2)

,B ~ - _1 ,B - ~ _1
+5t | BayBhy (Bu)B(Ti)) C)+ 5t (BBl (B<2>B<75)) Y <

: 2
b= I
(10)
Then according to Lemma 1 and Lemma 2, the following threquadties hold:
T T (9+1),k T (9):k |2
. b, _.||b
Z ||b§g+1),k||% Zt 1 || ||2 Z ||b(g) k||2 Zt71 || t ||2 (11)

k k ’
2/, by |2 2/ S0 1IbEF13



1
2

~ ~ 1 ~ ~ —1 1 _
tr (Bu)B?i)) - <§B<1)B<T1> (Bu)B(Tl)) 2) st (Bu)Ba)) - <§B<1)B<T1> (Bu)B(Tl)) ) )

12)
~ ~ 1=~ - _1 1 _1

tr (B<2>B<75)) —tr <§B<2)B<T2> (B<2)B<T2>) 2) st (B<2>B<75)) -t <§B<2)B<T2> (B<2)B<E>) 2)
(13)

Adding the both sides of of Eqgs. (10-13) together, we caniobta

d T o o
£ 4 az Z ||b§g+1)7k||§ + ptr (B(l)B(ji)) + ptr (B(Q)BEZ;)) <
k=1 \ t=1

(14)

i [r
LD LS ST B 3 4 st (Bu)B(Tl)) +/t (B@)B(Tz))
k=1 \ t=1

Thus, our algorithm decreases the objective value of Eqn(8ach iteration. When the objective
value keeps unchange, Eq. (4) is satisfiegl, the K.K.T. condition of the objective is satisfied.
Thus, our algorithm reaches one of the optimal solutionscaBee the objective in Eq. (3) is a
convex problem, Algorithm 1 will converge to one of the glthpaptimal solution. O

3 Experiments

We evaluate the proposed method by applying it to the AlzkegDisease Neuroimaging Initiative
(ADNI) cohort to examine the association between a wideearfgmaging measures and two types
of cognitive measures over a certain period of time. Our gtal discover a compact set of imaging
markers that are closely related to cognitive trajectories

Imaging markers and cognitive measuresData used in this work were obtained from the ADNI
databasegdni . | oni . ucl a. edu). One goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychigligassessment can be combined to mea-
sure the progression of Mild Cognitive Impairment (MCI) aatly AD. For up-to-date information,
seewww. adni - i nf o. or g. We downloaded 1.5 T MRI scans and demographic information f
821 ADNI-1 participants. We performed voxel-based morpbatiyn(VBM) on the MRI data by
following [8], and extracted mean modulated gray matter {Ghasures for 90 target regions of
interest (ROIs) (see Figure 3 for the ROI list and detailefinit®ns of these ROIs in [3]). These
measures were adjusted for the baseline intracranial w{U@V) using the regression weights de-
rived from the healthy control (HC) participants at the hiase We also downloaded the longitudinal
scores of the participants in two independent cognitivesssaents including Fluency Test and Rey’s
Auditory Verbal Learning Test (RAVLT). The details of thesegnitive assessments can be found
in the ADNI procedure manu&lsThe time points examined in this study for both imaging reask
and cognitive assessments included baseline (BL), Moni&),(Month 12 (M12) and Month 24
(M24). All the participants with no missing BL/M6/M12/M24 R1 measurements and cognitive
measures were included in this study. A total of 417 subjeet® involved in our study, including
84 AD, and 191 MCI and 142 HC participants. We examined 3 RA¥Edres RAVLTTOTAL,
RAVLT _TOT6 and RAVLT.RECOG, and 2 Fluency scores FLANIM and FLU_VEG.

3.1 Improved Cognitive Score Prediction from Longitudinal Imaging Markers

We first evaluate the proposed method by applying it to the A@i%ort for predicting the two types
of cognitive scores using the VBM markers, tracked over fiifierent time points. Our goal in this
experiment is to improve the prediction performance.

Experimental setting. We compare the proposed method against its two close cqamteinclud-
ing multivariate linear regression (LR) and ridge regr@sgiRR). LR is the simplest and widely
used regression model in statistical learning and braimg@ranalysis. RR is a regularized version
of LR to avoid over-fitting. Due to their mathematical natuteese two methods are performed for

2htt p: // www. adni - i nfo. or g/ Sci ent i st s/ Procedur esManual s. aspx



Table 1: Performance comparison for memory score predgictieasured by RMSE.

LR RR TGL Ours {2,1-norm only)  Ours (trace norm only)  Ours
RAVLT 0.380 0.341 0.318 0.306 0.301 0.283
Fluency 0.171 0.165 0.155 0.144 0.147 0.135

each cognitive measure at each time point separately, asdiiby cannot make use of the temporal
correlation. We also compare our method to a recent lonigiaichethod, called as Temporal Group
Lasso Multi-Task Regression (TGL) [9]. TGL takes into acebthe longitudinal property of the
data, which, however, is designed to analyze only one simglmory score at a time. In contrast,
besides imposing structured sparsity via terfsgrnorm regularization for imaging marker selec-
tion, our new method also imposes two trace norm reguléoizato capture the interrelationships
among different cognitive measures over the temporal déoen Thus, the proposed method is
able to perform association study for all the relevant ssofe cognitive test at the same tineeg,
our method can simultaneously deal with the three RAVLT espor the two Fluency scores.

To evaluate the usefulness of each component of the propesiubd, we implement three versions
of our method as follows. First, we only impose e -norm regularization on the unfolded co-
efficient tensoi3 along the feature mode, denoted dg ;~-norm only”. Second, we only impose
the trace norm regularizations on the two coefficient masriecnfolded from the coefficient tensdr
along the feature and task modes respectively, denotedzae ‘thorm only”. Finally, we implement
the full version of our new method that solves the proposgdative in Eqg. (3). Note that, if no
regularization is imposed, our method is degenerated ttrdki@ional LR method.

To measure prediction performance, we use standard 5-foss-e/alidation strategy by computing
the root mean square error (RMSE) between the predictedcndl aalues of the cognitive scores
on the testing data only. Specifically, the whole set of sttbjare equally and randomly partitioned
into five subsets, and each time the subjects within one salbseselected as the testing samples
and all other subjects in the remaining four subsets arefosdchining the regression models. This
process is repeated for five times and average results ase@dpn Table 1. To treat all regression
tasks equally, data for each response variable is nornddiivkave zero mean and unit variance.

Experimental results. From Table 1 we can see that the proposed method is congjidtetter than
the three competing methods, which can be attributed toal@nfing reasons. First, because LR
and RR methods by nature can only deal with one individuahitivg measure at one single time
point at a time, they cannot benefit from the correlationessdifferent cognitive measures over the
entire time course. Second, although TGL method improweptévious two methods in that it does
take into account longitudinal data patterns, it still ases all the test scoregd,, learning tasks)
from one cognitive assessment to be independent, whichgthads not true in reality. For example,
it is well known that [3, 4] in RAVLT assessment, the total riuen of words remembered by the
participants in the first 5 learning trials (RAVLTOTAL) heavily impacts the total number of words
which can be recalled in the 6th learning trial (RAVIITOT6), and the results of these two measures
both partially determines the final recognition rate aftérm3inutes delay (RAVLIRECOG). In
contrast, our new method considers alkarning tasksq = 3 for RAVLT assessment and =

2 for Fluency assessment) as an integral learning objectrasufated in Eq. (3), such that their
correlations can be incorporated by the two imposed lovi-ragularization terms.

Besides, we also observe that the two degenerated versithesproposed method do not perform as
well as their full version counterpart, which provides acmte evidence to support the necessities of
the component terms of our learning objective in Eq. (3) astiffes our motivation to impos® ;-
norm regularization for feature selection and trace nomularization to capture task correlations.

3.2 Identification of Longitudinal Imaging Markers

Because one of the primary goals of our regression anay/gisdentify a subset ofimaging markers
which are highly correlated to the AD progression reflectgdhe cognitive changes over time.
Therefore, we examine the imaging markers identified by tbpgsed methods with respect to the
longitudinal changes encoded by the cognitive scores deckat the four consecutive time points.
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Figure 3: Top panel: Average regression weights of imagiagkers for predicting three RAVLT
memory scores. Bottom panel: Top 10 average weights mapgedtte brain.

Shown in Figure 3 are (1) the heat map of the learned weigltdagifitudes of the average regression
weights for all three RAVLT scores at each time point) of tH&\Wmeasures at different time points
calculated by our method; and (2) the top 10 weights mapptwtba brain anatomy. A first glance
at the heat map in Figure 3 indicates that the selected irgagarkers have clear patterns that span
across all the four studied time points, which demonstritasthese markers are longitudinally
stable and thereby can potentially serve as screeningsaoger the course of AD progression.

Moreover, we observe that the bilateral hippocampi andihppp@mcampal gyri are among the top
selected features. These findings are in accordance witkritven knowledge that in the patho-
logical pathway of AD, medial temporal lobe is firstly affedt followed by progressive neocortical
damage [19, 20]. Evidence of a significant atrophy of middiagoral region in AD patients has
also been observed in previous studies [21, 22, 23].

In summary, the identified longitudinally stable imagingrkeas are highly suggestive and strongly
agree with the existing research findings, which warrargsthrrectness of the discovered imaging-
cognition associations to reveal the complex relatiorshiptween MRI measures and cognitive
scores. This is important for both theoretical researchdingtal practices for a better understand-
ing of AD mechanism.

4 Conclusion

To reveal the relationship between longitudinal cognitiveasures and neuroimaging markers, we
have proposed a novel high-order multi-task feature legrmodel, which selects the longitudinal
imaging markers that can accurately predict cognitive messat all the time points. As a result,
these imaging markers could fully differentiate the ertirgyitudinal trajectory of relevant cognitive
measures and better capture the associations betweemiyragrkers and cognitive changes over
time. To solve our new objective, which uses the non-smaintitired sparsity-inducing norms,
we have derived an iterative algorithm with a closed fornutoh in each iteration. We have further
proved our algorithm converges to the global optimal sohutiThe validations using ADNI imaging
and cognitive data have demonstrated the promise of ouradeth
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