Supplementary Material for: Learning Halfspaces with
the Zero-One Loss: Time-Accuracy Tradeoffs

A Additional Proofs

A.1 Proof of Lemma

By definition of 8 we have that p(y) = p(1) = 1 therefore p(z) > 1 for all z € [, 1]. The maxima

of our polynomial in [y, 1] is attained at zmax = /=%~ = 1/3[1+ 7y +1?] € (%, 1%’) and its
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Finally, the 1-norm is ||3]|; = QJEI/L"{/) < % +1.

A.2 Proof of Lemma [

We will take p(z) = aerf(c7z), where erf is the error function and ¢ = aerf™*(1/a). By a
standard fact, erf is equal to its infinite Taylor series expansion at any point, and this series equals

Hence, p(z) is an infinite degree polynomial, and it is only left to verify that the properties stated in
the lemma holds for it. Indeed, p is an odd polynomial and |p(z)| < « for all z. In addition,

p(7) = aerf(55y) = aerf(c/a) =1.
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Since p is monotonically increasing we conclude that p(z) > 1 for z > ~. Finally, we calculate
Zj ﬂ?Zﬂ. Since ¢ < 1, we have

> 2 2541 \ 2
S =S (L)
= T N2+ 1)
: 2
8a272§:(. T’QJ > 92
T J1(25+1)

B wi? i (%il)? <(2;!2)j)2

j=1

4 & 1 2er2\ ¥ o
w22 Z HETESE ; Using Stirling’s formula
j=1

4 o 1 2er2\ %
- " - max "
w22 ZJ(2J+1)2 J ( J )

j=1
0;16 i

IN

IN

IN

<

)

. . . g2 2
where in the last inequality we used the facts that -, j(zjlﬂ)g = 67 7 dlogd 0.06%- and

that max;(2e72/5)% < 4™ . Finally, 322! < 7r§/2 < %, hence we conclude our proof.

A.3 Proof of LemmaB

Let ¢gig(2) = m. [Shalev-Shwarfz ef all, D011, Lemma 2.5] proved the following. For
any L > 3 and ¢ € (0,1), there exists an odd polynomial, g(z) = >_; 327, such that for all
z € [—1,1] we have |g(z) — ¢sig(2)| < € and with

Zﬂ?Qj <6L* +exp (9Llog (%) +5) .
J

Fix some x > 2 to be specified later. Let ¢(2) = 2k (¢sig(2) — 1/2). It follows that the polynomial
p(z) = 2k(g(z) — 1/2) satisfies

[p(2) — 6(2)| = 269(2) = Gsig(2)] < 2r€ .

Fix some € to be also specified later, let ¢ = ¢/(2k), and choose L = % log (:—ﬂ) By construc-
tion,

1+m

o(7) = 26(dgig(v) — 1/2) = 2k (1,“ - 1/2) — % (“;;1 _ 2’;) —1.

Therefore, for z > 7, B B
> ¢(z) —ezd(y) —e=1-e

In addition, for all z, p(z) < &(2) + € < Kk + €. Define h(z) = p(2)/(1 — €). So, for z > 7,
h(z) > 1, and for any other z, h(z) < &

Using the inequality
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we obtain that L < L.
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Now, lets specify k, €. First, choose ¢ = 1/xk. Second, choose k so that o =
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Assume that £ > 2.5, we have that 1/x < 2/«. Hence, L < '%a = 27, which yields the bound,

2
B < () (6L +exp (9Llog (%) +5))
< 4a? (967’2 + exp (187’ log (87‘a2) + 5)) .

Finally, the assumptions on « and « imply that x > 2.5 and that L > 3 as required.
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