A Additional Material: Proofs for Mixability in Statistical Learning

Here we collect proofs that were omitted from the main body of the paper due to lack of space.

A.1 Proof of Proposition 1

—ne(Y.£(X)) . . o L
Proof. As S ey = e~ MU =EAIT (X)) s convex in 7, linearity of expectation implies

that ¢(n) := E [%} is also convex in 7). Observing that 1)(0) = 1, we have 0-stochastic

mixability. And by ¢(y) = ¢((1 = 1) 0+ 1 -n) < (1 - 1)p(0) + I¢(n) < 1 we obtain
~-stochastic mixability. O

A.2 Proof of Theorem 2

Proof. Let f* be as in Definition 2. For A € [0, 1] and any distribution 7 on &, define the function

6r(\y) = —In ((1 = e e 4y f st w(df>> , (10)

and let ¢ (\) = E[¢- (A, X,Y)] be its expectation. Then for any = and y, ¢ (), x,y) is convex in
A, because it is the composition of — In with a linear function. By linearity of expectation, it follows
that ¢ () is also convex.

Stochastic mixability is related to ¢ (0), the right-derivative of ¢, at A = 0, which we will now

compute. As ¢ (), z,y) is convex, the slope s, (h,x,y) = ¢"(O+h’w’y}37¢"(0’w’y)

in h, and

is nondecreasing

ey, " (x)) ey, f*(2))

<2ln—7w-——— = .
Lot @) + 1 [ e nlw @) n(df) — 2n 2In2

$x(1/2,z,y) = 2In %e—nf(yyf*(l'))

Hence E[s,(1/2,X,Y)] < 2In2 < oo and by the monotone convergence theorem [26]

. . d
d);’(o) = %?&E[Sﬂ(h7X, Y)] =E [1}1?01 Sﬂ'(ha Xa Y)] =E [6¢W(A7X7y)|)\=0}
e~ (Y, f(X)) e~ (Y, f(X))
:1—E[/7 df /E[i]

e e aeg R =1~ etV (xn 17

Comparing to (3), we see that 7-stochastic mixability is equivalent to the property that ¢/ (0) > 0
for all . And as ¢, is convex, this in turn is equivalent to ¢ () being nondecreasing.

Suppose first that (¢, F, P*) is n-stochastically mixable. Then, for any 7, ¢, () is nondecreasing
and hence

nE[Y, f*(X))] = ¢x(0) < ¢ (1) =E [~ 1n/6_”€(y“f(x)) m(df)],

from which (5) follows. Conversely, suppose that (5) holds for all 7. Then it holds in particular for
m = (1 — X)ds+ + A, where 04« is a point-mass on f*, A € [0, 1] is arbitrary, and 7 is an arbitrary
distribution on F. Plugging this choice of 7 into (5), we find that

%asﬁ(m — E[((Y, f*(X))]

<E[- %ln ((1 — A)e WS @) A/e*"“y"f(“")) w(df)) ] = %@—T(A)

for any A and 7. It follows that ¢z (\) is minimized at A = 0, and hence by its convexity that
it is nondecreasing. As we have established that 7)-stochastic mixability is implied when ¢z () is
nondecreasing for all 7, the proof is complete.
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Figure 2: Illustration of the proof of Lemma 7.

A.3 Proof of Lemma 6
Proof. Let f € F be arbitrary, and for 0 < A\ < 1 define
u(\) =E [7% In ((1 ~A)e YT A(;nf(Y,f(X))ﬂ ,
Then n-mixability of ¢ implies that for any x € X and X there exists a)(x) € A such that
Uy, ax(z)) < —% In ((1 — A)e @) 4 )\e_né(y’f(”“'))) Yy €Y.

Hence for any A, we have p(A\) > E[{(Y,ax(X))] > E[((Y, f*(X))] = w(0). This implies that
1/ (0) > 0, where /() is the right-derivative of (), and the lemma follows by computing /(0):
/ . oY (X)) _ gmnl(Y.f* (X))
WA =5 E Y (X iV f(X
n (1 — N)e YV f* (X)) 4 Ne—nt(Y.f(X))
/ oY1 (X)) _ p=nl(Y.F(X)) e—nt(Y.f (X))
0<nu'(0) =E { (V. F (X)) ] - [e—nf(Y,f*(X))} '

A.4 Proof of Lemma 7

Proof. Suppose that ¢ is not n-mixable. Then we will show that (£, Fg,) cannot be 7-stochastically
mixable either. Since / is not -mixable, there must exist pg,p; € ® := e~ and A € (0, 1) such
that ¢ := (1 — A)po + Ap1 is not in ® (see Figure 2). For i = 1,2, we have f% Inp; € 8, so
there must exist predictions ag,a; € A such that ¢,,(y) < —}, In p;(y) for all y or, equivalently,

e~ (W) > pi(y). Let f; € Fr be such that fi(z) = a; for all x. We will construct a distribution
P* on X x Y such that

Ep- [((Y, f(X))] > Ep- [~ ng(¥)] (10

for all f € Fpy. But, by the monotonicity of — In, we have

Ep- [_% In q(Y)} > Ep- [—% In ((1 — A)e MY Jo(X)) 4 Ae*nf(y’fﬂx)))} :

which contradicts 7-stochastic mixability of (¢, Fry1, P*) by the characterization in Theorem 2 for
the distribution 7 that assigns point masses 1 — A and A to fy and f7, respectively.

Our approach to establish (11) is illustrated by Figure 2. We define g, = aq for « € [0, 1], and let
B = sup{a | g € ®}. We will show that § € [0, 1) and that g lies on the boundary of ®. Then,
by assumption, —% In g is supportable, so that there exists a distribution Py> on Y such that

Ep; |~1ngs(V)| <Ept(v)]  foralltes. (12)
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Now let P% be any distribution on X and define P* = Py x Py. Then, for any f € Fyy, (12)
implies that

Ep-[((Y, f(X))] = Ep; Ep; [((Y, f(X)) | X]
> Ep; Ep; {—% In Q,B(Y)}

= Ep. [_%mq(Y)] ~lmgp

> Ep- [—%lnq(Y)} :

as required.

To show that 8 € [0, 1), we first observe that 0 < go(y) for all y, so that ¢o € ® and hence 5 > 0.
Furthermore, g € ® for all o < 3 since forany 0 < € < 3 — «, we have gg_. € ® which implies
that there exists a prediction a € A such that £, (y) < 7% Ingg_c(y) < f% In g, (y) for all y.

Hence —% Ing, € 8, and g, € ©. But now
lim — ¢o|| = lIm(8 — « <lim(g —a) =0,
aTﬁHqB q || aT5< )HQH aTB( )

so the assumption that @ is closed implies that gz € ®, and hence gg # ¢, showing that 5 < 1.

Finally, to prove that gg lies on the boundary of ®, consider a ball B, = {r € ® | ||r — ¢g|| < €}
of arbitrary radius € € (0,1 — j3]. This ball contains the point g, /2> which lies outside of ® by
definition of 3. Hence B, is not contained in ® for any €, and consequently gz must lie on the
boundary of ®. O

A.5 Proofs of Theorem 8 and Corollary 9

For 1 > 0, define
. 1 e~ MY, f(X))
hn(f» f ) = 5(1 -E |:e77€(yﬂf*(X)):| )
The letter h comes from the special case of log-loss, X = {x} a singleton, and a correct model F

that includes the true distribution P*(Y'|X = x), because in this case h; /, is the squared Hellinger
distance.

Also define the positive, continuous, increasing function ¢(a) = (e — a — 1)/a? for a # 0 and
¢(0) = 1/2.

We need the following lemma, which is similar to Lemma 8.2 by Audibert [27] and to item (4) of
Proposition 1.2 by Zhang [21].

Lemma 10. Suppose [L(Y, f(X)) —L(Y, f*(X))| < V (a.s.) for V < oo. Then for any ) > 0 there
exists cp ¢ € [¢(—nV), ¢(nV)] such that

d(f7 f*) = hn(fa f*) + Cn,fnv(ﬁ f*)

Proof. Let Z = L(Y, f(X)) — LY, f*(X)) € [-V,V]. We need to show
1
o

Suppose E[ZQ] = 0. Then Z = 0 (a.s.), and (13) is satisfied for any constant c,, ;. Otherwise (13)
may be rewritten as
(nZ)?

E [W : ¢(—772)] = Cn,f-

Recognising the left-hand side as the expectation of ¢(—nZ) under the distribution with density
(nZ)*dP*/ E[(nZ)?, its value must lie in the interval [min, ¢(—nz), max, ¢(—nz)]. As ¢ is in-
creasing, these extreme values are achieved at z = —V and z = V, from which the lemma fol-
lows. O

E[Z] = =(1 - Ele "?]) + ¢y, s E[Z?]. (13)
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Proof of Theorem 8. Although h,, is nonnegative when it equals the squared Hellinger distance,
this property does not hold in general. In fact, we observe that n-stochastic mixability up to € is
equivalent to

ho(f, f*) >0 forall f € Fsuchthatd(f, f*) > e. (14)

(Only if) Suppose the margin condition (7) holds with constants x > 1 and ¢y > 0. Then Lemma 10
implies that

d(f.f7) = hy(f.£7) < SVINV (£, £7) < SV g/ "d(f, 1)1/, (15)
Now let € > 0 be arbitrary. As the loss is bounded by V, we have d(f, f*) < V. Hence fore > V

(14) is trivially satisfied. So assume without loss of generality that ¢ < V, and let n = Ce

for some constant C' € (0,V~ ] to be determined later. Then n < 1, so that the fact that ¢ is
increasing implies ¢(nV) < ¢(V ) Now for any f € F such that d(f, f*) > € we have

sV, " < 6(V)eg MO < 9(V)egmCa(f, 1)
Combining this with (15), we find

dUJU—h( ) o(V )*“c«ﬁﬁ>
)2 (1= 0(V)ey /"C)d(f, ).
1/k
Taking C' = min {%, =7 |+ such that 1—¢ (V)¢ ~1/"C > 0, and using d(f, f*) >0, we find
that b, (f, f*) > 0 as required. This shows that the margin condition implies 7-stochastic mixability
up to e for n = Celv=D/*,

(If) Suppose the margin condition does not hold for «. That is, for every ¢y > 0 there exists f., € F

such that
COV(.fcoa f*)n > d(fcmf*)'

We will show that for every C' > 0 there exists € > 0 such that (14) with = C'e(*~1)/# is violated.
Let C' > 0 be arbitrary and take € = d(f,, f*) < V for some ¢y > 0 to be determined later. Then

n < CVE=D/% 5o that ¢(—nV) > ¢(—CV?~1/%) and hence Lemma 10 implies that
d(fegr ) = ho(Feos £7) = S0V IV (feo, £7) > S0V Imeg!"d(fu, J)M"
(fco’ ) > ¢(_CV2—1/;§)”C(1)/K61/»@ _ (b(—CVZ 1/;@)05/;@06
h(feas f7) < (1= 6(=CV> 79/ "C)e.
Choosing ¢y > (¢(—CV21/%)C)™" gives 1 — G(—CV21/F)et/*C < 0 and so we find that
hy(feo, f*) < Ofor f., € F such that d(f.,, f*) = €. This violates (14), as was to be shown. [

Lemma 11. Suppose the margin condition (7) is satisfied for some constants co > 0and 1 < k <
00. Then the loss of * is almost surely unique. That is, if E[¢(Y, ¢*(X))] = E[L(Y, f*(X))] =
min ey BIUY, f(X))], then (Y, g* (X)) = £(Y, f*(X)) almost surely.

Proof. We have d(g*, f*) = 0, and hence (7) implies that V(g*, f*) = 0, from which the lemma
follows. N

Proof of Corollary 9. If (¢,F, P*) is stochastically mixable, then the margin condition (7) holds
with K = 1 by Theorem 8. Conversely, if (7) holds with x = 1 then Theorem 8 implies that
(€,Ucsg Fe, P*) is stochastically mixable, which by Lemma 11 implies stochastic mixability of
(¢, 5, P*). O
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