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This supplementary material accompanies the NIPS paper on Fast Variational Inference in the Conjugate
Exponential Family. Its purpose is to provide details of how our very general framework applies in the case of
the specific models described in the paper. First we briefly mention the form of the three conjugate gradient
algorithms we used in optimization.

1 Conjugate gradient algorithms
There are several different methods for approximating the parameter β in the conjugate gradient algorithm. We
used the Polack-Ribière, Fletch-Reeves or Hestenes-Stiefel methods:

βPR =
〈g̃i, g̃i − g̃i−1〉i
〈g̃i−1, g̃i−1〉i−1

βFR =
〈g̃i, g̃i〉i

〈g̃i−1, g̃i−1〉i−1

βHS =
〈g̃i, g̃i − g̃i−1〉i

〈g̃i−1, g̃i − g̃i−1〉i−1

(1)

where 〈·, ·〉i denotes the inner product in Riemannian geometry, which is given by g̃>G(ρ)g̃

2 Mixture of Gaussians
A MoG model is defined as follows. We have a set of N D-dimensional vectors Y = {yn}Nn=1. The likelihood
is

p(Y|η,L) =

K∏
k=1

N∏
n=1

N (yn|µk,Λ
−1
k )`nk (2)

where L is a collection of binary latent variables indicating cluster membership, L = {{`nk}Nn=1}Kk=1 and η is
a collection of cluster parameters, η = {µk,Λk}Kk=1

The prior over L is given by a multinomial distribution with components π, which in turn have a Dirichlet
prior with uniform concentrations for simplicity:

p(L|π) =

K∏
k=1

N∏
n=1

π`nkk , p(π) = RD(α)

K∏
k=1

πα−1k (3)

with α representing a K dimensional vector with elements α, and RD being the normalising constant for the
Dirichlet distribution, RD(α) = Γ(Kα)Γ(α)−K .
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Figure 1: A graphical model representation of the MoG model. A d-separation test quickly shows that it is
possible to marginalise π and η given a variational parameterisation of L.

Finally we choose a conjugate Gaussian-Wishart prior for the cluster parameters which can be written

ln p(µk,Λk) = lnRGW (S0, ν0, κ0) +
ν0 −D

2
ln |Λk|

−1

2
tr
(
Λk

(
κ0µkµ

>
k + κ0m0m

>
0 − 2κ0m0µ

>
k + S0

)) (4)

where RGW is the normalising constant, and is given by

RGW (S, ν, κ) = |S| ν2 2−
(ν+1)D

2 π−
D(D+1)

4 κ
D
2 (

D∏
d=1

Γ((ν + 1− d)/2))−1.

2.1 Applying the KLC bound
The first task in applying the KLC bound is to select which variables to parameterise and which to marginalise.
From the graphical model representation of the MoG problem in Figure 1, we can see that we can select the latent
variables Z = {L} for parameterisation, whilst marginalising the mixing proportions and cluster parameters
(X = {π,η}). We note that it is possible to select the variables the other way around: parameterising π and η
and marginalising L, but parameterisation of the latent variables makes implementation a little simpler.

We use a factorised multinomial distribution q(L) to approximate the posterior for p(L|Y), parameterised
using the softmax functions so

q(L) =

N∏
n=1

K∏
k=1

r`nknk , rnk =
eρnk∑K
i=1 e

ρni
. (5)

We are now ready to apply the procedure described above to derive the KLC bound. First,

ln p(Y|η,π) ≥
∫
q(L){ln p(Y|η,L) + ln p(L|π)} dL +HL, (6)

where HL is the entropy of the distribution q(L). We expand to give

L1 = 1
2

K∑
k=1

{
− tr

(
Λk

(
r̂kµkµ

>
k + Ck − 2µkȳk

))
+r̂k lnπk + r̂k ln |Λk|

}
+HL − ND

2 ln(2π)

(7)

2



where r̂k =
∑N
n=1 rnk, Ck =

∑N
n=1 rnkyny>n , and ȳk =

∑N
n=1 rnkyn. The conjugacy between the interme-

diate bound L1 and the prior now emerges, making the second integral in the KLC bound tractable.
After exponentiating this expression and multiplying by the prior, p(η)p(π), we find that the integrals with

respect to both η and π are tractable. This result means that the only variational parameters needed are those of
q(L). The integrals result in

LKL = −ND
2

ln(2π) + lnRDi(α)− lnRDi(α
′)

+K lnRGW (S0, ν0, κ0)−
K∑
k=1

lnRGW (Sk, νk, κk) +HL

(8)

where we have defined

αk = α+ r̂k κk = κ0 + r̂k

mk = (κ0m0 + ȳk)/κk νk = ν0 + r̂k

Sk = S0 + Ck + κ0m0m
>
0 − κkmkm

>
k

(9)

and α′ represents a vector containing each αk. Some simplification of (8) leads to

LKL =

K∑
k=1

{
ln Γ(αk)− D

2 lnκk − νk
2 ln |Sk|

+

D∑
d=1

ln Γ((νk + 1− d)/2)
}

+HL + const.

(10)

where const. contains terms independent of r.
Equations (9) are similar to the update equations for the approximating distributions in the VBEM method-

ology [see e.g. Bishop, 2006]. However, for our model they are simply intermediate variables, representing
combinations of the true variational parameters r, the data, and the model prior parameters. When optimizing
the model with respect to the variational parameters, the dependency of these intermediate variables on r is not
ignored as it would be in MF variational approach.

The gradient of the MV bound (10) with respect to the parameters r is given by

∂LKL

∂rnk
=− D

2 κ
−1
k −

1
2 ln |Sk|+ ψ(αk)− ln rnk

− νk
2 (yn −mk)>S−1k (yn −mk))

+ 1
2

D∑
d=1

ψ((νk + 1− d)/2)− 1.

(11)

Taking a step in this direction (in the valiables γ) yields exactly the VB-E step associated with the mean-field
bound. the gradient in r is the natural gradient in γ (see paper section 4.1).

3 Latent Dirichlet Allocation
Latent Dirichlet allocation is a popular topic model. See Blei et al. [2003] for a thorough introduction.

Suppose we have D documents, K topics and a vocabulary of size V . The dth document contains Nd
words Wd = {wdn}Ndn=1, and each word is represented as a binary vector wdn ∈ {0, 1}V . Each word is
associated with a latent variable `dn, which assigns the word to a topic, thus `dn ∈ {0, 1}K . We’ll use W to
represent the colletion of all words, W = {Wd}Dd=1, and L to represent the collection of all latent variables
L = {{`dn}Ndn=1}Dd=1.
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Figure 2: A graphical model representation of Latent Dirichlet allocation. A d-separation test quickly shows
that it is possible to marginalise θ and φ given a variational parameterisation of L.

Each document has an associated vector of topic proportions, θd ∈ [0, 1]K , and each topic is represented
by a vector of word proportions φk ∈ [0, 1]V . We assume a symmetrical prior distribution over topics in each
document p(θd) = Dir(θd|α), and similarly for words within topics. p(φk) = Dir(φk|β).

The LDA generative model states that for each word, first the associated topic is drawn from the topic
proportions for the document, and then the word is drawn from the selected topic.

p(`dn|θd) =

K∏
k=1

θ`dnkdk

p(wdn|`dn, φ) =

K∏
k=1

V∏
v=1

φwdnv`dnkkv

(12)

3.1 The collapsed bound
To derive the colapsed bound, we use a similar d-separation test as for the mixture model to select the latent
variables as the parameteriser (non-collapsed) nodes. See Figure 2.

To proceed we assume a factorising multinomial posterior for L:

q(L) =

D∏
d=1

Nd∏
n=1

K∏
k=1

r`dnkdnk (13)

subject to the constraint
∑K
k=1 `dnk = 1, which we enforce through a softmax reparameterisation

rdnk =
eρdnk∑K

k′=1 e
ρdnk′

. (14)

We proceed by deriving the conditional bound

ln p(W | θ, φ) ≥ L1 =

D∑
d=1

Nd∑
n=1

K∑
k=1

V∑
v=1

(wdnvrdnk) lnφkv +

D∑
d=1

Nd∑
n=1

K∑
k=1

(rdnk ln θdk) +H[q(L)]. (15)

To marginalise the variables θ, φ, we exponentiate this bound and take the expectation under the priors. This
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results in

p(W ) ≥
∫

exp{L1}p(θ)p(φ) dθ dφ =

∫ K∏
k=1

V∏
v=1

φ
∑d
d=1

∑nd
n=1(wdnvrdnk)

kv

D∏
d=1

K∏
k=1

θ
(
∑Nd
n=1 rdnk)

dk

K∏
k=1

RDi(β)

V∏
v=1

φβ−1kv

D∏
d=1

RDi(α)

K∏
k=1

θα−1dk dθ dφ

exp{H[q(L)]}.

(16)

Careful inspection of the above reveals that the two integrals separate as expected, and result in the normal-
izers for each of the independent Dirichlet approximations. Taking the logarithm reults in

LKL = D lnRDi(α)−
D∑
d=1

lnRDi(α
′
d) +K lnRDi(β)−

K∑
k=1

lnRDi(β
′
k) +H[q(L)] (17)

where we have defined α′dk = α+
∑Nd
n=1 rdnk and β′kv = β +

∑d
d=1

∑nd
n=1 wdnvrdnk.

3.2 Topics found by LDA
For completeness we show here some topics found by LDA on the NIPS conference data.

Table 1: some topics found using LDA on papers from the 2011 NIPS conference.

neural training distribution data features model
input feature gaussian points image models

neurons classification inference point object variables
network class process clustering images parameters

fig tree prior distance objects structure
estimate prediction sampling dataset scene variable
neuron label likelihood similarity recognition markov
visual accuracy posterior cluster reference observed

nonlinear labels distributions manifold detection graphical
linear classifier bayesian spectral part hidden

4 BitSeq Model
The generative model for an RNA-seq assay is as follows. We assume that the experiment consists of a pile of
RNA fragments, where the abundance of fragments from transcript Tm in the assay is θm. The sequencer then
selects a fragment at random from the pile, such that the probability of picking a fragment corresponding to
transcript Tm is θm. Introducing a convenient membership vector `n for each read, we can write

p(L|θ) =

N∏
n=1

M∏
m=1

θ`nmm (18)

where `nm ∈ {0, 1} is a binary variable which indicates whether the nth fragment came from themth transcript
(`nm = 1) and is subject to

∑M
m=1 `nm = 1. We use L to represent the collection of all alignment variables.
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Figure 3: A graphical model representation of the BitSeq model. A d-separation test quickly shows that it is
possible to marginalise θ given a variational parameterisation of L.

Both θ and L are variables to be inferred, with θ the main object of interest.
Writing the collection of all reads as R = {rn}Nn=1, the likelihood of a set of alignments L is

p(R|T,L) =

N∏
n=1

p(rn|Tm)`nm (19)

where Tm represents the mth transcript, T represents the transcriptome.
The values of p(rn|Tm) can be computed before performing inference in θ since we are assuming a known

transcriptome. We compute these values based on the quality of alignment of the read rn to the transcript Tm,
using a model which can correct for sequence specific or fragmentation biases. The method is described in
detatil in Glaus et al. [2012].

We specify a conjugate Dirichlet prior over the vector θ.

p(θ) =
Γ(α̂o)∏M

m=1 Γ(αom)

M∏
m=1

θ
αom−1
m (20)

with α̂o =
∑M
m=1 α

o
m. αom represents our prior belief in the values of θm, and we use a relatively uninformative

but proper prior αom = 1∀m = 1 . . .M . A priori, we assume that the concentrations are all equal, but with
large uncertainty.

4.1 The collapsed bound
Figure 3 shows a graphical representation of the BitSeq model. It’s clear that parameterisation of the latent
variables will allow us to collapse θ, or vica-versa. Selecting again the latent variables for parameterisation,
X = {L}, Z = {θ}, we first find the conditional bound as usual by:

ln p(R |T,θ) = ln

∫
p(R |L,T)p(L |θ) dL

≥ Eq(L)

[
ln p(R |L,T) + ln p(L |θ)− ln q(L)

]
≥

N∑
n=1

M∑
m=1

`nm
(

ln p(rn |Tm) + ln θm − ln `nm
)

≥ L1

(21)
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It’s clear that this bound is conjugate to the prior for θ, so we can marginalise:

ln p(R |T) ≥ LKL =

N∑
n=1

M∑
m=1

`nm
(

ln p(rn |Tm)− ln `nm
)

+ ln Γ(α̂o)− ln Γ(α̂o +N)

−
M∑
m=1

(
ln Γ(αom)− ln Γ(αom + ˆ̀

m)
) (22)

where ˆ̀
m =

∑N
n=1 `n and we also have that the approximate posterior distribution for θ is a Dirichlet distribu-

tion with parameters αom + ˆ̀
m.
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