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Abstract

The task of image auto-annotation, namely assigning a set of relevant tags to an
image, is challenging due to the size and variability of tag vocabularies. Conse-
quently, most existing algorithms focus on tag assignment and fix an often large
number of hand-crafted features to describe image characteristics. In this paper
we introduce a hierarchical model for learning representations of standard sized
color images from the pixel level, removing the need for engineered feature rep-
resentations and subsequent feature selection for annotation. We benchmark our
model on the STL-10 recognition dataset, achieving state-of-the-art performance.
When our features are combined with TagProp (Guillaumin et al.), we compete
with or outperform existing annotation approaches that use over a dozen distinct
handcrafted image descriptors. Furthermore, using 256-bit codes and Hamming
distance for training TagProp, we exchange only a small reduction in performance
for efficient storage and fast comparisons. Self-taught learning is used in all of our
experiments and deeper architectures always outperform shallow ones.

1 Introduction

The development of successful methods for training deep architectures have influenced the devel-
opment of representation learning algorithms either on top of SIFT descriptors [1, 2] or raw pixel
input [3, 4, 5] for feature extraction of full-sized images. Algorithms for pixel-based representation
learning avoid the use of any hand-crafted features, removing the difficulty of deciding which fea-
tures are better suited for the desired task. Furthermore, self-taught learning [6] can be employed,
taking advantage of feature learning from image databases independent of the target dataset.

Image auto-annotation is a multi-label classification task of assigning a set of relevant, descriptive
tags to an image where tags often come from a vocabulary of hundreds to thousands of words.
Figure 1 illustrates this task. Auto-annotation is a difficult problem due to the high variability of
tags. Tags may describe objects, colors, scenes, local regions of the image (e.g. a building) or global
characteristics (e.g. whether the image is outdoors). Consequently, many of the most successful
annotation algorithms in the literature [7, 8, 9, 10, 11] have opted to focus on tag assignment and
often fix a large number of hand-crafted features for input to their algorithms. The task of feature
selection and applicability was studied by Zhang et al. [12] who utilized a group sparsity approach
for dropping features. Furthermore, they observed that feature importance varied across datasets and
some features led to redundancy, such as RGB and HSV histograms. Our main contribution in this
paper is to remove the need to compute over a dozen hand-crafted features for annotating images
and consequently remove the need for feature selection. We introduce a deep learning algorithm for
learning hierarchical representations of full-sized color images from the pixel level, which may be
seen as a generalization of the approach by Coates et al. [13] to larger images and more layers. We
first benchmark our algorithm on the STL-10 recognition dataset, achieving a classification accuracy
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of 62.1%. For annotation, we use the TagProp discriminitve metric learning algorithm [9] which has
enjoyed state-of-the-art performance on popular annotation benchmarks. We test performance on
three datasets: Natural scenes, IAPRTC-12 and ESP-Game. When our features are combined with
TagProp, we either compete with or outperform existing methods when 15 distinct hand-crafted
features and metrics are used. This gives the advantage of focusing new research on improving tag
assignment algorithms without the need of deciding which features are best suited for the task.

Figure 1: Sample annotation results on IAPRTC-12 (top) and ESP-Game (bottom) using TagProp
when each image is represented by a 256-bit code. The first column of tags is the gold standard and
the second column are the predicted tags. Predicted tags that are italic are those that are also gold
standard.

More recently, auto-annotation algorithms have focused on scalability to large databases with hun-
dreds of thousands to millions of images. Such approaches include that of Tsai et al. [10] who
construct visual synsets of images and Weston et al. [11] who used joint word-image embeddings.
Our second contribution proposes the use of representing an image with a 256-bit code for an-
notation. Torralba et al. [14] performed an extensive analysis of small codes for image retrieval
showing that even on databases with millions of images, linear search with Hamming distance can
be performed efficiently. We utilize an autoencoder with a single hidden layer on top of our learned
hierarchical representations to construct codes. Experimental results show only a small reduction
in performance is obtained compared to the original learned features. In exchange, 256-bit codes
are efficient to store and can be compared quickly with bitwise operations. To our knowledge, our
approach is the first to learn binary codes from full-sized color images without the use of hand-
crafted features. Such approaches often compute an initial descriptor such as GIST for representing
an image. These approaches introduce too strong of a bottleneck too early, where the bottleneck in
our pipeline comes after multiple layers of representation learning.

2 Hierarchical representation learning

In this section we describe our approach for learning a deep feature representation from the pixel-
level of a color image. Our approach involves aspects of typical pipelines: pre-processing and
whitening, dictionary learning, convolutional extraction and pooling. We define a module as a pass
through each of the above operations. We first introduce our setup with high level descriptions
followed by a more detailed descriptions of each stage. Finally, we show how to stack multiple
modules on top of eachother.

Given a set of images, the learning phase of the network is as follows:

1. Extract randomly selected patches from each image and apply pre-processing.
2. Construct a dictionary using K-SVD.
3. Convolve the dictionary with larger tiles extracted across the image with a pre-defined

stride length. Re-assemble the outputs in a non-overlapping, spatially preserving grid.
4. Pool over the reassembled features with a 2 layer pyramid.
5. Repeat the above operations for as many modules as desired.
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For extracting features of a new image, we perform steps (3) and (4) for each module.

2.1 Patch extraction and pre-processing

Let {I(1), . . . , I(m)} be a set of m input images. For simplicity of explanation, assume I(i) ∈
RnV ×nH×3, i = 1 . . .m, though it need not be the case that all images are of the same size. Given a
receptive field of size r×c, we first extract np patches across all images of size r×c×3, followed by
flatting each patch into a column vector. Let X = {x(1), . . . , x(np)}, x(i) ∈ Rn, i = 1 . . . np, n =
3rc denote the extracted patches. We first perform mean centering and unit variance scaling across
features. This corresponds to local brightness and contrast normalization, respectively.

Next we follow [13] by performing ZCA whitening, which results in patches having zero mean,∑np

i=1 x
(i) = 0, and identity covariance, 1

np

∑np

i=1 x
(i)(x(i))T = I . A whitening matrix is computed

as W = V (Z + εI)−
1
2V T where C = V ZV T is an eigendecompostion of the centered covariance

matrix C = C(X) produced by mean subtraction of M = M(X). The parameter ε is a small
positive number having the effect of a low-pass filter.

2.2 Dictionary learning

Let S = {s(1), . . . , s(np)} denote the whitened patches. We are now ready to construct a set of
bases from S. We follow Bo et al. [5] and use K-SVD for learning a dictionary. K-SVD constructs a
dictionary D ∈ Rn×k and a sparse representation Ŝ ∈ Rk×np by solving the following optimization
problem:

minimize
D,Ŝ

‖S −DŜ‖2F subject to ||ŝ(i)||0 ≤ q ∀i (1)

where k is the desired number of bases. Optimization is done using alternation. WhenD is fixed, the
problem of obtaining Ŝ can be decomposed into np subproblems of the form ‖s(i)−Dŝ(i)‖2 subject
to ||ŝ(i)||0 ≤ q ∀i which can be solved approximately using batch orthogonal matching pursuit [15].
When Ŝ is fixed, we update D by first expressing equation 1 in terms of a residual R(l):

‖S −DŜ‖2F = ‖S −
∑
j 6=l

d(j)ŝ(j)
T

− d(l)ŝ(l)
T

‖2F = ‖R(l) − d(l)ŝ(l)
T

‖2F (2)

where l ∈ {1, . . . , k}. A solution for d(l), the l-th column of D, can be obtained through an SVD of
R(l). For space considerations, we refer the reader to Rubinstein et al. [15] for more details. 1

2.3 Convolutional feature extraction

Given an image I(i), we first partition the image into a set of tiles T (i) of size nt × nt with a pre-
defined stride length s between each tile. Each patch in tile T (i)

t is processed in the same way as
before dictionary construction (mean centering, contrast normalization, whitening) for which the
mean and whitening matrices M and W are used. Let T (i)

tj denote the t-th tile and j-th channel with

respect to image I(i) and let D(l)
j ∈ Rr×c denote the l-th basis for channel j of D. The encoding

f
(i)
tl for tile t and basis l is given by:

f
(i)
tl = max

{
tanh

( 3∑
j=1

T
(i)
tj ∗D

(l)
j

)
, 0
}

(3)

where * denotes convolution and max and tanh operations are applied componentwise. Even though
it is not the associated encoding with K-SVD, this type of ’surrogate coding’ was studied by Coates

1We use Rubinstein’s implementation available at http://www.cs.technion.ac.il/
˜ronrubin/software.html
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et al. [13]. Let f (i)t denote the concatenated encodings over bases, which have a resulting dimension
of (nt − r + 1) × (nt − c + 1) × k. These are then re-assembled into spatial-preserving, non-
overlapping regions. See figure 2 for an illustration. We perform one additional localized contrast
normalization over f (i)t of the form f

(i)
t ← (f

(i)
t − µ(f (i)t ))/max{µ(σt), σ(i)

t }. Similar types of
normalization have been shown to be critical for performance by Ranzato et al. [16] and Bo et al.
[5].

Figure 2: Left: D is convolved with each tile (large green square) with receptive field (small blue
square) over a given stride. The outputs are re-assembled in non-overlapping regions preserving
spatial structure. Right: 2× 2 and 1× 1 regions are summed (pooled) along each cross section.

2.4 Pooling

The final step of our pipeline is to perform spatial pooling over the re-assembled regions of the
encodings f (i)t . Consider the l-th cross section corresponding to the l-th dictionary element, l ∈
{1, . . . , k}. We may then pool over each of the spatial regions of this cross section by summing
over the activations of the corresponding spatial regions. This is done in the form of a 2-layer spatial
pyramid, where the base of the pyramid consists of 4 blocks of 2×2 tiling and the top of the pyramid
consisting of a single block across the whole cross section. See figure 2 for an illustration.

Once pooling is performed, the re-assembled encodings result in a shape of size 1 × 1 × k and
2 × 2 × k from each layer of the pyramid. To obtain the final feature vector, each layer is flattened
into a vector and the resulting vectors are concatinated into a single long feature vector of dimension
5k for each image I(i). Prior to classification, these features are normalized to have zero mean and
unit variance.

2.5 Training multiple modules

What we have described up until now is how to extract features using a single module corresponding
to dictionary learning, extraction and pooling. We can now extend this framework into a deep
network by stacking multiple modules. Once the first module has been trained, we can take the
pooled features to be input to a second module. Freezing the learned dictionary from the first module,
we can then apply all the same steps a second time to the pooled representations. This type of stacked
training can be performed to as many modules as desired.

To be more specific on the input to the second module, we use an additional spatial pooling operation
on the re-assembled encodings of the first module, where we extract 256 blocks of 16 × 16 tiling,
resulting in a representation of size 16×16×k. It is these inputs which we then pass on to the second
module. We choose to use 16×16 as a trade off to aggregating too much information and increasing
memory and time complexity. As an illustration, the same operations for the second module are
used as in figure 2 except the image is replaced with the 16 × 16 × k pooled features. In the next
module, the number of channels is equal to the number of bases from the previous module.

3 Code construction and discriminitive metric learning

In this section we first show to learn binary codes from our learned features, followed by a review
of the TagProp algorithm [9] used for annotation.
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3.1 Learning binary codes for annotation

Figure 3: Coding layer activa-
tion values after training the au-
toencoder.

Our codes are learned by adding an autoencoder with a single
hidden layer on top of the learned output representations. Let
f (i) ∈ Rdm denote the learned representation for image I(i) of
dimension dm using either a one or two module architecture. The
code b(i) for f (i) is computed by b(i) = round(σ(f (i))) where
σ(f (i)) = (1+ exp(Wf (i)+β))−1, W ∈ Rdb×dm , β ∈ Rdb and
db is the number of bits (in our case, db = 256). Using a linear
output layer, our objective is to minimize the mean squared error
of reconstructions of the the inputs given by 1

m

∑
i

[
(W̃σ(f (i))+

β̃)− f (i)
]2

, where W̃ ∈ Rdm×db , β̃ ∈ Rdm are the second layer
weights and biases respectively. The objective is minimized us-
ing standard backpropagation.

As is, the optimization does not take into consideration the round-
ing used in the coding layer and consequently the output is not
adapted for this operation. We follow Salakhutdinov et al. [17]
and use additive ‘deterministic’ Gaussian noise with zero mean
in the coding layer that is fixed in advance for each datapoint when performing a bottom-up pass
through the network. Using unit variance was sufficient to force almost all the activations near
{0, 1}. We tried other approaches, including simple thresholding but found the Gaussian noise to be
most successful without interfering with the optimization. Figure 3 shows the coding layer activation
values after backpropagation when noise has been added.

3.2 The tag propagation (TagProp) algorithm

Let V denote a fixed vocabulary of tags and I denote a list of input images. Our goal at test time,
given a new input image i′, is to assign a set of tags v ∈ V that are most relevant to the content
of i′. TagProp operates on pairwise distances to learn a conditional distribution of words given
images. More specifically, let yiw ∈ {1,−1}, i ∈ I, w ∈ V be an indicator for whether tag w is
present in image i. In TagProp, the probability that yiw = 1 is given by σ(αwxiw + βw), xiw =∑

j πijyjw where σ(z) = (1 + exp(−z))−1 is the logistic function, (αw, βw) are word-specific
model parameters to be estimated and πij are distance-based weights also to be estimated. More
specifically, πij is expressed as

πij =
exp(−dh(i, j))∑
j′ exp(−dh(i, j′))

, dh(i, j) = hdij , h ≥ 0 (4)

where we shall call dij the base distance between images i and j. Let θ = {αw∀w ∈ V, βw∀w ∈
V, h} denote the list of model parameters. The model is trained to maximize the following quasi-
likelihood of the data given by L =

∑
i,w ciw log p(yiw), ciw = 1

n+
if yiw = 1 and 1

n−
otherwise,

where n+ is the total number of positive labels of w and likewise for n− and missing labels. This
weighting allows us to take into account imbalances between label presence and absence. Combined
with the logistic word models, it accounts for much higher recall in rare tags which would normally
be less likely to be recalled in a basic k-NN setup. Optimization of L is performed using a projected
gradient method for enforcing the non-negativity constraint in h.

The choice of base distance used depends on the image representation. In the above description, the
model was derived assuming only a single base distance is computed between images. This can be
generalized to an arbitrary number of distances by letting h be a parameter vector and letting dh(i, j)
be a weighted combination of distances in h. Under this formulation, multiple descriptors of images
can be computed and weighted. The best performance of TagProp [9] was indeed obtained using this
multiple metric formulation in combination with the logistic word models. In our case, Euclidean
distance is used and Hamming distance for binary codes. Furthermore, we only consider pairwise
distances from the K nearest neighbors, where K is chosen though cross validation.
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4 Experiments

We perform experimental evaluation of our methods on 4 datasets: one dataset, STL-10, for object
recognition to benchmark our hierarchical model and three datasets for annotation: Natural Scenes,
IAPRTC-12 and ESP-Game 2 .

For all our experiments, we use k1 = 512 first module bases, k2 = 1024 second module bases,
receptive field sizes of 6 × 6 and 2 × 2 and tile sizes (nt) of 16 × 16 and 6 × 6. The total number
of features for the combined first and second module representation is thus 5(k1 + k2) = 7680.
Images are resized such that the longest side is no larger than 300 pixels with preserved aspect ratio.
The first module stride length is chosen based on the length of the longest side of the image: 4 if
the side is less than 128 pixels, 6 if less than 214 pixels and 8 otherwise. The second module stride
length is fixed at 2. For training the autoencoder, we use 10 epochs (passes over the training set)
with minibatches of size no larger than 1000. Optimization is done using Polak Ribiere conjugate
gradients with 3 linesearches per minibatch. 3

We also incorporate the use of self-taught learning [6] in our annotation experiments by utilizing
the Mirflickr dataset for dictionary learning. Mirflickr is a collection of 25000 images taken from
flickr and deemed to have high interestness rating. We randomly sampled 10000 images from this
dataset for training K-SVD on both modules. All reported results for Natural Scenes, IAPRTC-12
and ESP-Game use self-taught learning. Our code for feature learning will be made available online.

4.1 STL-10

Table 1: A selection of the best results obtained on the STL-
10 dataset.

Method Accuracy
Sparse filtering [18] 53.5%
OMP, k = 1600 [13] 54.9%
OMP, SC encoder, k = 1600 [13] 59.0%
Receptive field learning, 3 modules [19] 60.1%
Video unsup features [20] 61.0%
Hierarchical matching persuit [21] 64.5%
1st Module 56.4 %
1st + 2nd Module 62.1 %

The STL-10 dataset is a collection of
96×96 images of 10 classes with im-
ages partitioned into 10 folds of 1000
images each and a test set of size
8000. Alongside these labeled im-
ages is a set of 100000 unlabeled im-
ages that may or may not come from
the same distribution as the training
data. The evaluation procedure is
to perform representation learning on
the unlabeled data and apply the rep-
resentations to the training set, aver-
aging test errors across all folds. We
randomly chose 10000 images from
the unlabeled set for training and use
a linear L2-SVM for classification with 5-fold cross validation for model selection.

Table 1 shows our results on STL-10. Our 2 module architecture outperforms all existing approaches
except for the recently proposed hierarchical matching pursuit (HMP). HMP uses joint layerwise
pooling and separate training for RGB and grayscale dictionaries, approaches which may also be
adapted to our method. Moreover, we hypothesize that further improvements can be made when the
receptive field learning strategies of Coates et al. [19] and Jia et al. [22] are incorporated into a third
module.

4.2 Natural scenes

The Natural Scenes dataset is a multi-label collection of 2000 images from 5 classes: desert, forest,
mountain, ocean and sunset. We follow standard protocol and report the average results of 5 metrics
using 10 fold cross validation: Hamming loss (HL), one error (OE), coverage (C), ranking loss
(RL) and average precision (AP). For space considerations, these metrics are defined in the ap-
pendix. To perform model selection with TagProp, we perform 5-fold cross validation with each of
the 10-folds to determine the value of K which minimizes Hamming loss.

2Tags for IAPRTC-12 and ESP-Game as well as the features used by existing approaches can be found at
http://lear.inrialpes.fr/people/guillaumin/data.php

3Rasmussen’s minimize routine is used.
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Table 2: A selection of the best results obtained on the Natural Scenes dataset. Arrows indicate
direction of improved performance.

Method HL ↓ OE ↓ C ↓ RL ↓ AP ↑
ML-KNN [23] 0.169 0.300 0.939 0.168 0.803
ML-I2C [24] 0.159 0.311 0.883 0.156 0.804
InsDif [25] 0.152 0.259 0.834 0.140 0.830
ML-LI2C [24] 0.129 0.190 0.624 0.091 0.881
1st Module 0.113 0.170 0.580 0.080 0.895
1st Module, 256-bit 0.113 0.169 0.585 0.082 0.894
1st + 2nd Module 0.100 0.140 0.554 0.074 0.910
1st + 2nd Module, 256-bit 0.106 0.155 0.558 0.075 0.903

Table 3: A selection of the best results obtained on the IAPRTC-12 dataset (left) and ESP-Game
(right) datasets.

Method P R N+ P R N+
MBRM [26] 0.24 0.23 223 0.18 0.19 209
LASSO [7] 0.28 0.29 246 0.21 0.24 224
JEC [7] 0.28 0.29 250 0.22 0.25 224
GS [12] 0.32 0.29 252 - - -
CCD [8] 0.44 0.29 251 0.36 0.24 232
TagProp (σ SD) [9] 0.41 0.30 259 0.39 0.24 232
TagProp (σ ML) [9] 0.46 0.35 266 0.39 0.27 239
1st Module 0.37 0.25 241 0.37 0.20 231
1st Module, 256-bit 0.34 0.22 236 0.35 0.20 231
1st + 2nd Module 0.42 0.29 252 0.38 0.22 228
1st + 2nd Module, 256-bit 0.36 0.25 244 0.37 0.23 236

Table 2 shows the results of our method. In all five measures we obtain improvement over previous
methods. Furthermore, using 256-bit codes offers near equivalent performance. As in the case of
STL-10, improvements are made over a single module.

4.3 IAPRTC-12 and ESP-Game

IAPRTC-12 is a collection of 20000 images with a vocabulary size of |V | = 291 and an average
of 5.7 tags per image. ESP-Game is a collection of 60000 images with |V | = 268 and an average
of 4.7 tags per class. Following Guillaumin et al. [9] we apply experiments to a pre-defined subset
of 20000 images. Using standard protocol performance is evaluated using 3 measures: precision
(P), recall (R) and the number of recalled tags (N+). N+ indicates the number of tags that were
recalled at least once for annotation on the test set. Annotations are made by choosing the 5 most
probable tags for each image as is done with previous evaluations. As with the natural scenes dataset,
we perform 5-fold cross validation to determine K for training TagProp.

Table 3 shows our results with IAPRTC-12 on the left and ESP-Game on the right. Our results
give comparable performance to CCD and the single distance (SD) variation of TagProp. Unfortu-
nately, we are unable to match the recall values obtained with the multiple metric (ML) variation of
TagProp. Of importance, we outperform GS who specifically studied the use of feature selection.
Our 256-bit codes suffer a loss of performance on IAPRTC-12 but give near equivalent results on
ESP-Game. We note again that our features were learned on an entirely different dataset (Mirflickr)
in order to show their generalization capabilities.

Finally, we perform two qualitative experiments. Figure 4 shows sample unsupervised retrieval
results using the learned 256-bit codes on IAPRTC-12 and ESP-Game while figure 5 illustrates
sample annotation performance when training on one dataset and annotating the other. These results
show that our codes are able to capture high-level semantic concepts that perform well for retrieval
and transfer learning across datasets. We note however, that when annotating ESP-game when
training was done on IAPRTC-12 led to more false human annotations (such as the bottom-right
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Figure 4: Sample 256-bit unsupervised retrieval results on ESP-Game (top) and IAPRTC-12 (bot-
tom). A query image from the test set is used to retrieve the four nearest neighbors from the training
set.

Figure 5: Sample 256-bit annotation results when training on one dataset and annotating the other.
Top: Training on ESP-Game, annotation on IAPRTC-12. Bottom: Training on IAPRTC-12, anno-
tation on ESP-Game.

image in figure 5). We hypothesize that this is due to a larger proportion of persons in the IAPRTC-
12 training set.

5 Conclusion

In this paper we introduced a hierarchical model for learning feature representations of standard
sized color images for the task of image annotation. Our results compare favorably to existing
approaches that use over a dozen handcrafted image descriptors.

Our primary goal for future work is to test the effectiveness of this approach on web-scale anno-
tation systems with millions of images. The success of self-taught learning in this setting means
only one dictionary per module ever needs to be learned. Furthermore, our features can be used
in combination with any nearest neighbor based algorithm for annotation. It is our hope that the
successful use of binary codes for annotation will allow further research to bridge the gap between
the annotation algorithms used on small scale problems to those required for web scale tasks. We
also intend to evaluate the effectiveness of semantic hashing on large databases when much smaller
codes are used. Krizhevsky et al. [27] evaluated semantic hashing using very deep autoencoders on
tiny (32 × 32) images. Future work also involves performing similar experiments but on standard
sized RGB images.
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