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Abstract

Given a linear system in a real or complex domain, linear regression
aims to recover the model parameters from a set of observations. Re-
cent studies in compressive sensing have successfully shown that under
certain conditions, a linear program, namely, `1-minimization, guar-
antees recovery of sparse parameter signals even when the system is
underdetermined. In this paper, we consider a more challenging prob-
lem: when the phase of the output measurements from a linear system
is omitted. Using a lifting technique, we show that even though the
phase information is missing, the sparse signal can be recovered ex-
actly by solving a simple semidefinite program when the sampling rate
is sufficiently high, albeit the exact solutions to both sparse signal re-
covery and phase retrieval are combinatorial. The results extend the
type of applications that compressive sensing can be applied to those
where only output magnitudes can be observed. We demonstrate the
accuracy of the algorithms through theoretical analysis, extensive sim-
ulations and a practical experiment.

1 Introduction

Linear models, e.g. y = Ax, are by far the most used and useful type of
model. The main reasons for this are their simplicity of use and identifi-
cation. For the identification, the least-squares (LS) estimate in a complex
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domain is computed by1

xls = argmin
x
‖y −Ax‖22 ∈ Cn, (1)

assuming the output y ∈ CN and A ∈ CN×n are given. Further, the LS
problem has a unique solution if the system is full rank and not underdeter-
mined, i.e. N ≥ n.

Consider the alternative scenario when the system is underdetermined,
i.e. n > N . The least squares solution is no longer unique in this case, and
additional knowledge has to be used to determine a unique model parameter.
Ridge regression or Tikhonov regression [Hoerl and Kennard, 1970] is one
of the traditional methods to apply in this case, which takes the form

xr = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖22, (2)

where λ > 0 is a scalar parameter that decides the trade off between fit in
the first term and the `2-norm of x in the second term.

Thanks to the `2-norm regularization, ridge regression is known to pick
up solutions with small energy that satisfy the linear model. In a more
recent approach stemming from the LASSO [Tibsharani, 1996] and com-
pressive sensing (CS) [Candès et al., 2006, Donoho, 2006], another convex
regularization criterion has been widely used to seek the sparsest parameter
vector, which takes the form

x`1 = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖1. (3)

Depending on the choice of the weight parameter λ, the program (3) has been
known as the LASSO by Tibsharani [1996], basis pursuit denoising (BPDN)
by Chen et al. [1998], or `1-minimization (`1-min) by Candès et al. [2006]. In
recent years, several pioneering works have contributed to efficiently solving
sparsity minimization problems such as [Tropp, 2004, Beck and Teboulle,
2009, Bruckstein et al., 2009], especially when the system parameters and
observations are in high-dimensional spaces.

In this paper, we consider a more challenging problem. In a linear model
y = Ax, rather than assuming that y is given, we will assume that only the
squared magnitude of the output is observed:

bi = |yi|2 = |〈x,ai〉|2, i = 1, · · · , N, (4)

1Our derivation in this paper is primarily focused on complex signals, but the results
should be easily extended to real domain signals.
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where AH = [a1, · · · ,aN ] ∈ Cn×N , yT = [y1, · · · , yN ] ∈ C1×N and AH

denotes the Hermitian transpose of A. This is clearly a more challenging
problem since the phase of y is lost when only its (squared) magnitude is
available. A classical example is that y represents the Fourier transform of x,
and that only the Fourier transform modulus is observable. This scenario
arises naturally in several practical applications such as optics [Walther,
1963, Millane, 1990], coherent diffraction imaging [Fienup, 1987], and as-
tronomical imaging [Dainty and Fienup, 1987] and is known as the phase
retrieval problem.

We note that in general phase cannot be uniquely recovered regardless
whether the linear model is overdetermined or not. A simple example to see
this, is if x0 ∈ Cn is a solution to y = Ax, then for any scalar c ∈ C on the
unit circle cx0 leads to the same squared output b. As mentioned in [Candès
et al., 2011a], when the dictionary A represents the unitary discrete Fourier
transform (DFT), the ambiguities may represent time-reversed solutions or
time-shifted solutions of the ground truth signal x0. These global ambigu-
ities caused by losing the phase information are considered acceptable in
phase retrieval applications. From now on, when we talk about the solution
to the phase retrieval problem, it is the solution up to a global phase am-
biguity. Accordingly, a unique solution is a solution unique up to a global
phase.

Further note that since (4) is nonlinear in the unknown x, N � n
measurements are in general needed for a unique solution. When the number
of measurementsN are fewer than necessary for a unique solution, additional
assumptions are needed to select one of the solutions (just like in Tikhonov,
Lasso and CS).

Finally, we note that the exact solution to either CS and phase retrieval is
combinatorially expensive [Chen et al., 1998, Candès et al., 2011c]. There-
fore, the goal of this work is to answer the following question: Can we
effectively recover a sparse parameter vector x of a linear system up to a
global ambiguity using its squared magnitude output measurements via con-
vex programming? The problem is referred as compressive phase retrieval
(CPR) [Moravec et al., 2007].

The main contribution of the paper is a convex formulation of the sparse
phase retrieval problem. Using a lifting technique, the NP-hard problem is
relaxed as a semidefinite program. We also derive bounds for guaranteed
recovery of the true signal and compare the performance of our CPR algo-
rithm with traditional CS and PhaseLift [Candès et al., 2011a] algorithms
through extensive experiments. The results extend the type of applications
that compressive sensing can be applied to; namely, applications where only
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magnitudes can be observed.

1.1 Background

Our work is motivated by the `1-min problem in CS and a recent PhaseLift
technique in phase retrieval by Candès et al. [2011c]. On one hand, the
theory of CS and `1-min has been one of the most visible research topics in
recent years. There are several comprehensive review papers that cover the
literature of CS and related optimization techniques in linear programming.
The reader is referred to the works of [Candès and Wakin, 2008, Bruckstein
et al., 2009, Loris, 2009, Yang et al., 2010]. On the other hand, the fusion
of phase retrieval and matrix completion is a novel topic that has recently
been studied in a selected few papers, such as [Candès et al., 2011c,a]. The
fusion of phase retrieval and CS was discussed in [Moravec et al., 2007]. In
the rest of the section, we briefly review the phase retrieval literature and
its recent connections with CS and matrix completion.

Phase retrieval has been a longstanding problem in optics and x-ray
crystallography since the 1970s [Kohler and Mandel, 1973, Gonsalves, 1976].
Early methods to recover the phase signal using Fourier transform mostly
relied on additional information about the signal, such as band limitation,
nonzero support, real-valuedness, and nonnegativity. The Gerchberg-Saxton
algorithm was one of the popular algorithms that alternates between the
Fourier and inverse Fourier transforms to obtain the phase estimate iter-
atively [Gerchberg and Saxton, 1972, Fienup, 1982]. One can also utilize
steepest-descent methods to minimize the squared estimation error in the
Fourier domain [Fienup, 1982, Marchesini, 2007]. Common drawbacks of
these iterative methods are that they may not converge to the global solu-
tion, and the rate of convergence is often slow. Alternatively, Balan et al.
[2006] have studied a frame-theoretical approach to phase retrieval, which
necessarily relied on some special types of measurements.

More recently, phase retrieval has been framed as a low-rank matrix
completion problem in [Chai et al., 2010, Candès et al., 2011a,c]. Given
a system, a lifting technique was used to approximate the linear model
constraint as a semidefinite program (SDP), which is similar to the objective
function of the proposed method only without the sparsity constraint. The
authors also derived the upper-bound for the sampling rate that guarantees
exact recovery in the noise-free case and stable recovery in the noisy case.

We are aware of the work by Moravec et al. [2007], which has considered
compressive phase retrieval on a random Fourier transform model. Lever-
aging the sparsity constraint, the authors proved that an upper-bound of
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O(k2 log(4n/k2)) random Fourier modulus measurements to uniquely spec-
ify k-sparse signals. Moravec et al. [2007] also proposed a greedy compressive
phase retrieval algorithm. Their solution largely follows the development of
`1-min in CS, and it alternates between the domain of solutions that give
rise to the same squared output and the domain of an `1-ball with a fixed
`1-norm. However, the main limitation of the algorithm is that it tries to
solve a nonconvex optimization problem and that it assumes the `1-norm of
the true signal is known. No guarantees for when the algorithm recovers the
true signal can therefore be given.

2 CPR via SDP

In the noise free case, the phase retrieval problem takes the form of the
feasibility problem:

find x subj. to b = |Ax|2 = {aHi xxHai}1≤i≤N , (5)

where bT = [b1, · · · , bN ] ∈ R1×N . This is a combinatorial problem to solve:
Even in the real domain with the sign of the measurements {αi}Ni=1 ⊂
{−1, 1}, one would have to try out combinations of sign sequences until
one that satisfies

αi
√
bi = aTi x, i = 1, · · · , N, (6)

for some x ∈ Rn has been found. For any practical size of data sets, this
combinatorial problem is intractable.

Since (5) is nonlinear in the unknown x, N � n measurements are in
general needed for a unique solution. When the number of measurements N
are fewer than necessary for a unique solution, additional assumptions are
needed to select one of the solutions. Motivated by compressive sensing, we
here choose to seek the sparsest solution of CPR satisfying (5) or, equivalent,
the solution to

min
x
‖x‖0, subj. to b = |Ax|2 = {aHi xxHai}1≤i≤N . (7)

As the counting norm ‖ · ‖0 is not a convex function, following the `1-norm
relaxation in CS, (7) can be relaxed as

min
x
‖x‖1, subj. to b = |Ax|2 = {aHi xxHai}1≤i≤N . (8)

Note that (8) is still not a linear program, as its equality constraint is not
a linear equation. In the literature, a lifting technique has been extensively
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used to reframe problems such as (8) to a standard form in semidefinite
programming, such as in Sparse PCA [d’Aspremont et al., 2007].

More specifically, given the ground truth signal x0 ∈ Cn, let X0
.
=

x0x
H
0 ∈ Cn×n be an induced rank-1 semidefinite matrix. Then the com-

pressive phase retrieval (CPR) problem can be cast as2

minX ‖X‖1
subj. to bi = Tr(aHi Xai), i = 1, · · · , N,

rank(X) = 1, X � 0.
(9)

This is of course still a non-convex problem due to the rank constraint.
The lifting approach addresses this issue by replacing rank(X) with Tr(X).
For a semidefinite matrix, Tr(X) is equal to the sum of the eigenvalues of
X (or the `1-norm on a vector containing all eigenvalues of X). This leads
to an SDP

minX Tr(X) + λ‖X‖1
subj. to bi = Tr(ΦiX), i = 1, · · · , N,

X � 0,
(10)

where we further denote Φi
.
= aia

H
i ∈ Cn×n and where λ ≥ 0 is a design

parameter. Finally, the estimate of x can be found by computing the rank-1
decomposition of X via singular value decomposition. We will refer to the
formulation (10) as compressive phase retrieval via lifting (CPRL).

We compare (10) to a recent solution of PhaseLift by Chai et al. [2010],
Candès et al. [2011c]. In Chai et al. [2010], Candès et al. [2011c], a similar
objective function was employed for phase retrieval:

minX Tr(X)
subj. to bi = Tr(ΦiX), i = 1, · · · , N,

X � 0,
(11)

albeit the source signal was not assumed sparse. Using the lifting technique
to construct the SDP relaxation of the NP-hard phase retrieval problem,
with high probability, the program (11) recovers the exact solution (sparse or
dense) if the number of measurements N is at least of the order of O(n log n).
The region of success is visualized in Figure 1 as region I.

If x is sufficiently sparse and random Fourier dictionaries are used for
sampling, Moravec et al. [2007] showed that in general the signal is uniquely

2In this paper, ‖X‖1 for a matrix X denotes the entry-wise `1-norm, and ‖X‖2 denotes
the Frobenius norm.
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defined if the number of squared magnitude output measurements b exceeds
the order of O(k2 log(4n/k2)). This lower bound for the region of success of
CPR is illustrated by the dash line in Figure 1.

Finally, the motivation for introducing the `1-norm regularization in (10)
is to be able to solve the sparse phase retrieval problem for N smaller than
what PhaseLift requires. However, one will not be able to solve the compres-
sive phase retrieval problem in region III below the dashed curve. Therefore,
our target problems lie in region II.

I

II

III

Figure 1: An illustration of the regions of importance in solving the phase
retrieval problem. While PhaseLift primarily targets problems in region I,
CPRL operates primarily in regions II and III.

Example 1 (Compressive Phase Retrieval). In this example, we illustrate
a simple CPR example, where a 2-sparse complex signal x0 ∈ C64 is first
transformed by the Fourier transform F ∈ C64×64 followed by random pro-
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jections R ∈ C32×64 (generated by sampling a unit complex Gaussian):

b = |RFx0|2. (12)

Given b, F , and R, we first apply PhaseLift algorithm [Candès et al.,
2011c] with A = RF to the 32 squared observations b. The recovered dense
signal is shown in Figure 2. As seen in the figure, PhaseLift fails to identify
the 2-sparse signal.

Next, we apply CPRL (15), and the recovered sparse signal is also shown
in Figure 2. CPRL correctly identifies the two nonzero elements in x.
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Figure 2: The magnitude of the estimated signal provided by CPRL and
PhaseLift (PL). CPRL correctly identifies elements 2 and 24 to be nonzero
while PhaseLift provides a dense estimate. It is also verified that the esti-
mate from CPRL, after a global phase shift, is approximately equal the true
x0.

3 Stable Numerical Solutions for Noisy Data

In this section, we consider the case that the measurements are contaminated
by data noise. In a linear model, typically bounded random noise affects
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the output of the system as y = Ax+ e, where e ∈ CN is a noise term with
bounded `2-norm: ‖e‖2 ≤ ε. However, in phase retrieval, we follow closely
a more special noise model used in Candès et al. [2011c]:

bi = |〈x,ai〉|2 + ei. (13)

This nonstandard model avoids the need to calculate the squared magnitude
output |y|2 with the added noise term. More importantly, in practical phase
retrieval applications, measurement noise is introduced when the squared
magnitudes or intensities of the linear system are measured, not on y itself
[Candès et al., 2011c].

Accordingly, we denote a linear operator B of X as

B : X ∈ Cn×n 7→ {Tr(ΦiX)}1≤i≤N ∈ RN , (14)

which measures the noise-free squared output. Then the approximate CPR
problem with bounded `2 error model (13) can be solved by the following
SDP program:

min Tr(X) + λ‖X‖1
subj. to ‖B(X)− b‖2 ≤ ε,

X � 0.
(15)

The estimate of x, just as in noise free case, can finally be found by com-
puting the rank-1 decomposition of X via singular value decomposition. We
refer to the method as approximate CPRL. Due to the machine rounding
error, in general a nonzero ε should be always assumed in the objective (15)
and its termination condition during the optimization.

We should further discuss several numerical issues in the implementa-
tion of the SDP program. The constrained CPRL formulation (15) can be
rewritten as an unconstrained objective function:

min
X�0

Tr(X) + λ‖X‖1 +
µ

2
‖B(X)− b‖22, (16)

where λ > 0 and µ > 0 are two penalty parameters.
In (16), due to the lifting process, the rank-1 condition of X is approx-

imated by its trace function Tr(X). In Candès et al. [2011c], the authors
considered phase retrieval of generic (dense) signal x. They proved that
if the number of measurements obeys N ≥ cn log n for a sufficiently large
constant c, with high probability, minimizing (16) without the sparsity con-
straint (i.e. λ = 0) recovers a unique rank-1 solution obeying X∗ = xxH .
See also Recht et al. [2010].
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In Section 7, we will show that using either random Fourier dictionaries
or more general random projections, in practice, one needs much fewer mea-
surements to exactly recover sparse signals if the measurements are noise
free. Nevertheless, in the presence of noise, the recovered lifted matrix X
may not be exactly rank-1. In this case, one can simply use its rank-1
approximation corresponding to the largest singular value of X.

We also note that in (16), there are two main parameters λ and µ that
can be defined by the user. Typically µ is chosen depending on the level of
noise that affects the measurements b. For λ associated with the sparsity
penalty ‖X‖1, one can adopt a warm start strategy to determine its value
iteratively. The strategy has been widely used in other sparse optimization,
such as in `1-min [Yang et al., 2010]. More specifically, the objective is
solved iteratively with respect to a sequence of monotonically decreasing
λ, and each iteration is initialized using the optimization results from the
previous iteration. The procedure continues until a rank 1 solution has
been found. When λ is large, the sparsity constraint outweighs the trace
constraint and the estimation error constraint, and vice versa.

Example 2 (Noisy Compressive Phase Retrieval). Let us revisit Example 1
but now assume that the measurements are contaminated by noise. Using
exactly the same data as in Example 1 but adding uniformly distributed mea-
surement noise between −1 and 1, CPRL was able to recover the 2 nonzero
elements. PhaseLift, just as in Example 1 gave a dense estimate of x.

4 Computational Aspects

In this section we discuss computational issus of the proposed SDP formula-
tion, algorithms for solving the SDP and to efficient approximative solution
algorithms.

4.1 A Greedy Algorithm

Since (10) is an SDP, it can be solved by standard software, such as CVX
[Grant and Boyd, 2010]. However, it is well known that the standard tool-
boxes suffer when the dimension of X is large. We therefore propose a greedy
approximate algorithm tailored to solve (10). If the number of nonzero ele-
ments in x is expected to be low, the following algorithm may be suitable
and less computationally heavy compare to approaching the original SDP:
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Algorithm 1: Greedy Compressive Phase Retrieval via Lifting
(GCPRL)

Set I = ∅ and let γ > 0, ε > 0.
repeat

for k = 1, · · · , N, do
Set Ik = I

⋃
{k} and solve Xk

.
=

arg minX�0 Tr(X(Ik)) + γ
∑N

i=1(bi − Tr(a
(Ik)
i a

(Ik)
i

H
X(Ik)))2.

Let Wk denote the corresponding objective value.

Let p be such that Wp ≤Wk, k = 1, · · · , N . Set I = I
⋃
{p} and

X = Xp.

until Wp < ε;

Example 3 (GCPRL ability to solve the CPR problem). To demonstrate
the effectiveness of GCPRL let us consider a numerical example. Let the
true x0 ∈ Cn be a k-sparse signal, let the nonzero elements be randomly
chosen and their values randomly distributed on the complex unit circle.
Let A ∈ CN×n be generated by sampling from a complex unit Gaussian
distribution.

If we fix n/N = 2, that is, twice as many unknowns as measurements,
and apply GCPRL for different values of n, N and k we obtain the com-
putational times visualized in the left plot of Figure 3. In all simulations
γ = 10 and ε = 10−3 are used in GCPRL. The true sparsity pattern was
always recovered. Since GCPRL can be executed in parallel, the simulation
times can be divided by the number of cores used (the average run time in
Figure 3 is computed on a standard laptop running Matlab, 2 cores, and
using CVX to solve the low dimensional SDP of GCPRL). The algorithm is
several magnitudes faster than the standard interior-point methods used in
CVX.

5 The Dual

CPRL takes the form:

minX Tr(X) + λ‖X‖1
subj. to bi = Tr(ΦiX); i = 1, · · · , N,

X � 0.
(17)
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Figure 3: Average run time of GCPRL in Matlab CVX environment.

If we define h(X) to be an N -dimensional vector such that our constraints
are h(X) = 0, then we can equivalently write:

minX maxµ,Y,Z=ZH Tr(X) + Tr(ZX) + µTh(X)− Tr(Y X)
subj. to Y � 0,

‖Z‖∞ ≤ λ.
(18)

Then the dual becomes:

maxµ,Z=ZH µT b
subj. to ‖Z‖∞ ≤ λ.

Y := I + Z −
∑N

i=1 µiΦi � 0.

(19)

6 Analysis

This section contains various analysis results. The analysis follows that of
CS and have been inspired by derivations given in [Candès et al., 2011c,
2006, Donoho, 2006, Candès, 2008, Berinde et al., 2008, Bruckstein et al.,
2009]. The analysis is divided into three subsections. The first subsection
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gives results based on RIP, the second based on RIP-1 and the third based
on mutual coherence.

6.1 Analysis Using RIP

In order to state some theoretical properties, we need a generalization of the
restricted isometry property (RIP).

Definition 4 (RIP). We will say that a linear operator B(·) is (ε, k)-RIP
if for all X 6= 0 s.t. ‖X‖0 ≤ k we have∣∣∣∣‖B(X)‖22

‖X‖22
− 1

∣∣∣∣ < ε. (20)

We can now state the following theorem:

Theorem 5 (Recoverability/Uniqueness). Let B(·) be a (ε, 2‖X∗‖0)-RIP
linear operator with ε < 1 and let x̄ be the sparsest solution to (4). If X∗

satisfies
b =B(X∗),

X∗ �0,

rank{X∗} =1,

(21)

then X∗ is unique and X∗ = x̄x̄H .

Proof of Theorem 5. Assume the contrary i.e., X∗ 6= x̄x̄H . It is clear that
‖x̄x̄H‖0 ≤ ‖X∗‖0 and hence ‖x̄x̄H −X∗‖0 ≤ 2‖X∗‖0. If we now apply the
RIP inequality (20) on x̄x̄H − X∗ and use that B(x̄x̄H − X∗) = 0 we are
led to the contradiction 1 < ε. We therefore conclude that X∗ is unique and
X∗ = x̄x̄H .

We can also give a bound on the sparsity of x̄:

Theorem 6 (Bound on ‖x̄x̄H‖0 from above). Let x̄ be the sparsest solution
to (4) and let X̃ be the solution of CPRL (10). If X̃ has rank 1 then
‖X̃‖0 ≥ ‖x̄x̄H‖0.

Proof of Theorem 6. Let X̃ be a rank-1 solution of CPRL (10). By contra-
diction, assume ‖X̃‖0 < ‖x̄x̄H‖0. Since X̃ satisfies the constraints of (4), it
must give a lower objective value than x̄x̄H in (4) . This is a contradiction
since x̄x̄H was assumed to be the solution of (4). Hence we must have that
‖X̃‖0 ≥ ‖x̄x̄H‖0.
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Corollary 7 (Guaranteed Recovery Using RIP). Let x̄ be the sparsest so-
lution to (4). The solution of CPRL (10), X̃, is equal to x̄x̄H if it has rank
1 and B is (ε, 2‖X̃‖0)-RIP with ε < 1.

Proof of Corollary 7. This follows trivially from Theorem 5 by realizing that
X̃ satisfy all properties of X∗.

If x̄x̄H = X̃ can not be guaranteed, the following bound could come
useful:

Theorem 8 (Bound on ‖X∗ − X̃‖2). Let ε < 1
1+
√
2

and assume B(·) to

be a (ε, 2k)-RIP linear operator. Let X∗ be any matrix (sparse or dense)
satisfying

b =B(X∗),

X∗ �0,

rank{X∗} =1,

(22)

let X̃ be the CPRL solution, (10), and form Xs from X∗ by setting all but
the k largest elements to zero, i.e.,

Xs = argmin
X:‖X‖0≤k

‖X∗ −X‖1. (23)

Then,

‖X̃ −X∗‖2 ≤
2

(1− ρ)
√
k
‖X∗ −Xs‖1

+(2(1− ρ)−1 + k−1/2)
1

λ
(TrX∗ − Tr X̃) (24)

with ρ =
√

2ε/(1− ε).

Proof of Theorem 8. The proof is inspired by the work on compressed sens-
ing presented in Candès [2008].

First, we introduce ∆ = X̃ − X∗. For a matrix X and an index set
T , we use the notation XT to mean the matrix with all zeros except those
indexed by T , which are set to the corresponding values of X. Then let
T0 be the index set of the k largest elements of X∗ in absolute value, and
T c0 = {(1, 1), (1, 2), . . . , (n, n)} \ T0 be its complement. Let T1 be the index
set associated with the k largest elements in absolute value of ∆T c

0
and

T0,1
.
= T0 ∪ T1 be the union. Let T2 be the index set associated with the k

largest elements in absolute value of ∆T c
0,1

, and so on.
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Notice that

‖∆‖2 = ‖∆T0,1 + ∆T c
0,1
‖2 ≤ ‖∆T0,1‖2 + ‖∆T c

0,1
‖2. (25)

We will now study each of the two terms on the right hand side separately.
We first consider ‖∆T c

0,1
‖2. For j > 1 we have that for each i ∈ Tj and

i′ ∈ Tj−1 that |∆[i]| ≤ |∆[i′]|. Hence ‖∆Tj‖∞ ≤ ‖∆Tj−1‖1/k. Therefore,

‖∆Tj‖2 ≤ k1/2‖∆Tj‖∞ ≤ k−1/2‖∆Tj−1‖1 (26)

and
‖∆T c

0,1
‖2 ≤

∑
j≥2
‖∆Tj‖2 ≤ k−1/2‖∆T c

0
‖1. (27)

Now, since X̃ minimizes TrX + λ‖X‖1, we have

TrX∗ + λ‖X∗‖1 ≥ Tr X̃ + λ‖X̃‖1
≥ Tr X̃ + λ(‖X∗T0‖1 − ‖∆T0‖1
+ ‖∆T c

0
‖1 − ‖X∗T c

0
‖1).

(28)

Hence,

‖∆T c
0
‖1 ≤

−1

λ
Tr ∆− ‖X∗T0‖1 + ‖∆T0‖1 + ‖X∗T c

0
‖1 + ‖X∗‖1. (29)

Using the fact ‖X∗T c
0
‖1 = ‖X∗ − Xs‖1 = ‖X∗‖1 − ‖X∗T0‖1, we get a bound

for ‖∆T c
0
‖1:

‖∆T c
0
‖1 ≤

−1

λ
Tr ∆ + ‖∆T0‖1 + 2‖X∗T c

0
‖1. (30)

Subsequently, the bound for ‖∆T c
0,1
‖2 is given by

‖∆T c
0,1
‖2 ≤k−1/2(

−1

λ
Tr ∆ + ‖∆T0‖1 + 2‖X∗T c

0
‖1) (31)

≤k−1/2(−1

λ
Tr ∆ + 2‖X∗T c

0
‖1) + ‖∆T0‖2. (32)

Next, we consider ‖∆T0,1‖2. It can be shown by a similar derivation as
in Candès [2008] that

‖∆T0,1‖2 ≤
ρ

1− ρ
k−1/2‖X∗ −Xs‖1 −

1

λ

1

1− ρ
Tr ∆. (33)
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Lastly, combine the bounds for ‖∆T c
0,1
‖2 and ‖∆T0,1‖2, and we get the

final result:

‖∆‖2 ≤‖∆T0,1‖2 + ‖∆T c
0,1
‖2 (34)

≤− k−1/2 1

λ
Tr ∆ + 2k−1/2‖X∗T c

0
‖1 + 2‖∆T0,1‖2 (35)

≤−
(

2 (1− ρ)−1 + k−1/2
) 1

λ
Tr ∆ (36)

+ 2(1− ρ)−1k−1/2‖X∗ −Xs‖1. (37)

The bound given in Theorem 8 is rather impractical since it contains
both ‖X̃ −X∗‖2 and Tr(X̃ −X∗). The weaker bound given in the following
corollary does not have this problem:

Corollary 9 (A Practical Bound on ‖X̃−X∗‖2). The bound on ‖X̃−X∗‖2
in Theorem 8 can be relaxed to a weaker bound:(

1−
(2k1/2

1− ρ
+ 1
) 1

λ

)
‖X̃ −X∗‖2 (38)

≤ 2

(1− ρ)
√
k
‖X∗ −Xs‖1. (39)

If X∗ is k-sparse, ε < 1
1+
√
2
, and B(·) is an (ε, 2k)-RIP linear operator, then

we can guarantee that X̃ = X∗ if

λ >
2k1/2

1− ρ
+ 1 (40)

and X̃ has rank 1.

Proof of Corollary 9. It follows from the assumptions of Theorem 8 that

1− ρ = 1−
√

2ε

1− ε
≥ 1−

√
2 1
1+
√
2

1− 1
1+
√
2

= 0. (41)

Hence, (
2 (1− ρ)−1 + k−1/2

) 1

λ
≥ 0. (42)
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Therefore, we have

‖X̃ −X∗‖2 ≤
2

(1− ρ)
√
k
‖X∗ −Xs‖1 (43)

+
(

2 (1− ρ)−1 + k−1/2
) 1

λ
(TrX∗ − Tr X̃) (44)

≤ 2

(1− ρ)
√
k
‖X∗ −Xs‖1 (45)

+
(

2 (1− ρ)−1 + k−1/2
) 1

λ
‖X∗ − X̃‖1 (46)

≤ 2

(1− ρ)
√
k
‖X∗ −Xs‖1 (47)

+
(

2 (1− ρ)−1 + k−1/2
) k1/2

λ
‖X∗ − X̃‖2 (48)

which is equal to the proposed condition after a rearrangement of the terms.

Given the above analysis, however, it may be the case that the linear
operator B(·) does not satisfy the RIP property defined in Definition 4 for a
sufficiently small ε, as pointed out in Candès et al. [2011c]. Therefore, next
we turn our attention to RIP-1 linear operators.

6.2 Analysis Using RIP-1

We define RIP-1 as follows:

Definition 10 (RIP-1). A linear operator B(·) is (ε, k)-RIP-1 if for all
matrices X 6= 0 subject to ‖X‖0 ≤ k, we have∣∣∣∣‖B(X)‖1

‖X‖1
− 1

∣∣∣∣ < ε. (49)

Theorems 5–6 and Corollary 7 all hold with RIP replaced by RIP-1.
The proofs follow those of the previous section with minor modifications
(basically replace the 2-norm with the `1-norm). The RIP-1 counterparts of
Theorems 5–6 and Corollary 7 are not restated in details here. Instead we
summarize the most important property in the following theorem:

Theorem 11 (Upper Bound & Recoverability Through `1). Let x̄ be the
sparsest solution to (4). The solution of CPRL (10), X̃, is equal to x̄x̄H if
it has rank 1 and B(·) is (ε, 2‖X̃‖0)-RIP-1 with ε < 1.
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Proof of Theorem 11. The proof follows trivially for the proof Theorem 7
(basically replace the 2-norm with the `1-norm).

6.3 Analysis Using Mutual Coherence

The RIP type of argument may be difficult to check for a given matrix and
are more useful for claiming results for classes of matrices/linear operators.
For instance, it has been shown that random Gaussian matrices satisfy the
RIP with high probability. However, given one sample of a random Gaussian
matrix, it is hard to check if it actually satisfies the RIP or not.

Two alternative arguments are spark Chen et al. [1998] and mutual co-
herence Donoho and Elad [2003], Candès et al. [2011b]. The spark condition
usually gives tighter bounds but is known to be difficult to compute. On
the other hand, mutual coherence may give less tight bounds, but is more
tractable. We will focus on mutual coherence here.

Mutual coherence is defined as:

Definition 12 (Mutual Coherence). For a matrix A, define the mutual
coherence as

µ(A) = max
1≤k,j≤n,k 6=j

|aHk aj |
‖ak‖2‖aj‖2

. (50)

By an abuse of notation, let B be the matrix satisfying b = BXs with Xs

being the vectorized version of X. We are now ready to state the following
theorem:

Theorem 13 (Recovery Using Mutual Coherence). Let x̄ be the sparsest
solution to (4). The solution of CPRL (10), X̃, is equal to x̄x̄H if it has
rank 1 and ‖X̃‖0 < 0.5(1 + 1/µ(B)).

Proof of Theorem 13. Since x̄x̄H satisfies b = B(x̄x̄H), it follows from
[Donoho and Elad, 2003, Thm. 1] that

‖x̄x̄H‖0 <
1

2

(
1 +

1

µ(B)

)
(51)

is a sufficient condition for x̄x̄H to be a unique solution. It further follows
that if X̃ also satisfies (51) then we must have that X̃ = x̄x̄H since X̃ also
satisfies b = B(X̃).
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7 Experiment

This section gives a number of comparisons with the other state-of-the-art
methods in compressive phase retrieval. Code for the numerical illustrations
will be made available.

7.1 Simulation

First, we repeat the simulation given in Example 1 for k = 1, . . . , 5. For
each k, n = 64 is fixed, and we increase the measurement dimension N until
CPRL recovered the true sparse support in at least 95 out of 100 trials, i.e.,
95% success rate. New data (x, b, and R) are generated in each trial. The
curve of 95% success rate is shown in Figure 4.
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50
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N

 

 

CS

CPRL

PhaseLift

Figure 4: The curves of 95% success rates for CPRL, PhaseLift, and CS.
Note that in the CS scenario, the simulation is given the complete output y
instead of its squared magnitudes.

With the same simulation setup, we compare the accuracy of CPRL with
the PhaseLift approach and the CS approach in Figure 4. First, note that
CS is not applicable to phase retrieval problems in practice, since it assumes
the phase of the observation is also given. Nevertheless, the simulation shows
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CPRL via the SDP solution only requires a slightly higher sampling rate to
achieve the same success rate as CS, even when the phase of the output is
missing. Second, similar to the discussion in Example 1, without enforcing
the sparsity constraint in (11), PhaseLift would fail to recover correct sparse
signals in the low sampling rate regime.

It is also interesting to see the performance as n and N vary and k held
fixed. We therefore use the same setup as in Figure 4 but now fixed k = 2
and for n = 10, . . . , 60, gradually increased N until CPRL recovered the true
sparsity pattern with 95% success rate. The same procedure is repeated to
evaluate PhaseLift and CS. The results are shown in Figure 5.
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Figure 5: The curves of 95% success rate for CPRL, PhaseLift, and CS.
Note that the CS simulation is given the complete output y instead of its
squared magnitudes.

Compared to Figure 4, we can see that the degradation from CS to CPRL
when the phase information is omitted is largely affected by the sparsity of
the signal. More specifically, when the sparsity k is fixed, even when the
dimension n of the signal increases dramatically, the number of squared
observations to achieve accurate recovery does not increase significantly for
both CS and CPRL.
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Next, we calculate the quantity 1
2

(
1 + 1

µ(B)

)
, as Theorem 13 shows that

when

‖X̃‖0 <
1

2

(
1 +

1

µ(B)

)
(52)

and X̃ has rank 1, then x̄x̄H = X̃. The quantity is plotted for a number
of different N and n’s in Figure 6. From the plot it can be concluded that
if the solution X̃ has rank 1 and only a single nonzero component for a
choice of 125 ≥ n, N ≥ 5, Theorem 13 can guarantee that x̄x̄H = X̃. We
also observer that Theorem 13 is pretty conservative, since from Figure 5
we have that with high probability we needed N > 25 to guarantee that a
two sparse vector is recovered correctly for n = 20.
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Figure 6: A contour plot of the quantity 1
2

(
1 + 1

µ(B)

)
. µ is taken as the

average over 10 realizations of B.

7.2 Audio Signals

In this section, we further demonstrate the performance of CPRL using
signals from a real-world audio recording. The timbre of a particular note
on an instrument is determined by the fundamental frequency, and several
overtones. In a Fourier basis, such a signal is sparse, being the summation of
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a few sine waves. Using the recording of a single note on an instrument will
give us a naturally sparse signal, as opposed to synthesized sparse signals in
the previous sections. Also, this experiment will let us analyze how robust
our algorithm is in practical situations, where effects like room ambience
might color our otherwise exactly sparse signal with noise.

Our recording z ∈ Rs is a real signal, which is assumed to be sparse in
a Fourier basis. That is, for some sparse x ∈ Cn, we have z = Finvx, where
Finv ∈ Cs×n is a matrix representing a transform from Fourier coefficients
into the time domain. Then, we have a randomly generated mixing matrix
with normalized rows, R ∈ RN×s, with which our measurements are sampled
in the time domain:

y = Rz = RFinvx. (53)

Finally, we are only given the magnitudes of our measurements, such that
b = |y|2 = |Rz|2.

For our experiment, we choose a signal with s = 32 samples, N = 30
measurements, and it is represented with n = 2s (overcomplete) Fourier
coefficients. Also, to generate Finv, the Cn×n matrix representing the Fourier
transform is generated, and s rows from this matrix are randomly chosen.

The experiment uses part of an audio file recording the sound of a tenor
saxophone. The signal is cropped so that the signal only consists of a single
sustained note, without silence. Using CPRL to recover the original audio
signal given b, R, and Finv, the algorithm gives us a sparse estimate x, which
allows us to calculate zest = Finvx. We observe that all the elements of zest
have phases that are π apart, allowing for one global rotation to make zest
purely real. This matches our previous statements that CPRL will allow us
to retrieve the signal up to a global phase.

We also find that the algorithm is able to achieve results that capture
the trend of the signal using less than s measurements. In order to fully
exploit the benefits of CPRL that allow us to achieve more precise estimates
with smaller errors using fewer measurements relative to s, the problem
should be formulated in a much higher ambient dimension. However, using
the CVX Matlab toolbox by Grant and Boyd [2010], we already ran into
computational and memory limitations with the current implementation of
the CPRL algorithm. These results highlight the need for a more efficient
numerical implementation of CPRL as an SDP problem.
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Figure 7: The retrieved signal zest using CPRL versus the original audio
signal z.

8 Conclusion and Discussion

A novel method for the compressive phase retrieval problem has been pre-
sented. The method takes the form of an SDP problem and provides the
means to use compressive sensing in applications where only squared mag-
nitude measurements are available. The convex formulation gives it an edge
over previous presented approaches and numerical illustrations show state
of the art performance.

One of the future directions is improving the speed of the standard SDP
solver, i.e., interior-point methods, currently used for the CPRL algorithm.
The authors have previously introduced efficient numerical acceleration tech-
niques for `1-min and Sparse PCA problems. We believe similar techniques
also apply to CPR. Such accelerated CPR solvers would facilitate explor-
ing a broad range of high-dimensional CPR applications in optics, medical
imaging, and computer vision, just to name a few.
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