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Abstract

Reservoir computing is a new, powerful and flexible machine learning tech-
nique that is easily implemented in hardware. Recently, by using a time-
multiplexed architecture, hardware reservoir computers have reached per-
formance comparable to digital implementations. Operating speeds allow-
ing for real time information operation have been reached using optoelec-
tronic systems. At present the main performance bottleneck is the readout
layer which uses slow, digital postprocessing. We have designed an analog
readout suitable for time-multiplexed optoelectronic reservoir computers,
capable of working in real time. The readout has been built and tested ex-
perimentally on a standard benchmark task. Its performance is better than
non-reservoir methods, with ample room for further improvement. The
present work thereby overcomes one of the major limitations for the future
development of hardware reservoir computers.

1 Introduction

The term “reservoir computing” encompasses a range of similar machine learning techniques,
independently introduced by H. Jaeger [1] and by W. Maass [2]. While these techniques
differ in implementation details, they share the same core idea: that one can leverage the
dynamics of a recurrent nonlinear network to perform computation on a time dependent
signal without having to train the network itself. This is done simply by adding an external,
generally linear readout layer and training it instead. The result is a powerful system that
can outperform other techniques on a range of tasks (see for example the ones reported
in [3, 4]), and is significantly easier to train than recurrent neural networks. Furthermore
it can be quite easily implemented in hardware [5, 6, 7], although it is only recently that
hardware implementations with performance comparable to digital implementations have
been reported [8, 9, 10].

One great advantage of this technique is that it places almost no requirements on the
structure of the recurrent nonlinear network. The topology of the network, as well as
the characteristics of the nonlinear nodes, are left to the user. The only requirements are
that the network should be of sufficiently high dimensionality, and that it should have
suitable rich dynamics. The last requirement essentially means that the dynamics allows
the exploration of a large number of network states when new inputs come in, while at
the same time retaining for a finite time information on the previous inputs [11]. For this
reason, the reservoir computers appearing in literature use widely different nonlinear units,
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see for example [1, 2, 5, 12] and in particular the time multiplexing architecture proposed
in [7, 8, 9, 10].

Optical reservoir computers are particularly promising, as they can provide an alternative
path to optical computing. They could leverage the inherent high speeds and parallelism
granted by optics, without the need for strong nonlinear interaction needed to mimic tradi-
tional electronic components. Very recently, optoelectronic reservoir computers have been
demonstrated by different research teams [10, 9], conjugating good computational perfor-
mances with the promise of very high operating speeds. However, one major drawback in
these experiments, as well as all preceding ones, was the absence of readout mechanisms:
reservoir states were collected on a computer and post-processed digitally, severely limiting
the processing speeds obtained and hence the applicability.

An analog readout for experimental reservoirs would remove this major bottleneck, as
pointed out in [13]. The modular characteristics of reservoir computing imply that hard-
ware reservoirs and readouts can be optimized independently and in parallel. Moreover,
an analog readout opens the possibility of feeding back the output of the reservoir into the
reservoir itself, which in turn allows the use of different training techniques [14] and to apply
reservoir computing to new categories of tasks, such as pattern generation [15, 16].

In this paper we present a proposal for the readout mechanism for opto-electronic reservoirs,
using an optoelectronic intensity modulator. The design that we propose will drastically
cut down their operation time, specially in the case of long input sequences. Our proposal
is suited to optoelectronic or all-optical reservoirs, but the concept can be easily extended
to any experimental time-multiplexed reservoir computer. The mechanism has been tested
experimentally using the experimental reservoir reported in [10], and compared to a digital
readout. Although the results are preliminary, they are promising: while not as good as
those reported in [10], they are however already better than non-reservoir methods for the
same task [16].

2 Reservoir computing and time multiplexing

2.1 Principles of Reservoir Computing

The main component of a reservoir computer (RC) is a recurrent network of nonlinear
elements, usually called “nodes” or “neurons”. The system typically works in discrete time,
and the state of each node at each time step is a function of the input value at that time
step and of the states of neighboring nodes at the previous time step. The network output
is generated by a readout layer - a set of linear nodes that provide a linear combination of
the instantaneous node states with fixed coefficients.

The equation that describes the evolution of the reservoir computer is

xi(n) = f(αmiu(n) + β

N∑
j=1

wijxj(n− 1)) (1)

where xi(n) is the state of the i-th node at discrete time n, N is the total number of nodes,
u(n) is the reservoir input at time n, mi and wij are the connection coefficients that describe
the network topology, α and β are two parameters that regulate the network’s dynamics,
and f is a nonlinear function. One generally tunes α and β to have favorable dynamics
when the input to be treated is injected in the reservoir. The network output y(n) is then
constructed using a set of readout weights Wi and a bias weight Wb, as

y(n) =

N∑
i=1

Wixi(n) +Wb (2)

Training a reservoir computer only involves the readout layer, and consists in finding the
best set of readout weights Wi and bias Wb that minimize the error between the desired
output and the actual network output. Unlike conventional recurrent neural networks, the
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Figure 1: Scheme of the experimental setup, including the optoelectronic reservoir (’Input’
and ’Reservoir’ layers) and the analog readout (’Output’ layer). The red and green parts
represent respectively the optical and electronic components. “AWG”: Arbitrary waveform
generator. “M-Z”: LiNbO3 Mach-Zehnder modulator. “FPD”: Feedback photodiode. “AMP”:
Amplifier. “Scope”: NI PXI acquisition card.

strength of connections mi and wij are left untouched. As the output layer is made only of
linear units, given the full set of reservoir states xi(n) for all the time steps n, the training
procedure is a basic, regularized linear regression.

2.2 Time multiplexing

The number of nodes in a reservoir computer determines an upper limit to the reservoir
performance [17]; this can be an obstacle when designing physical implementations of RCs,
which should contain a high number of interconnected nonlinear units. A solution to this
problem proposed in [7, 8], is time multiplexing: the xi(n) are computed one by one by
a single nonlinear element, which receives a combination of the input u(n) and a previous
state xj(n − 1). In addition an input mask mi is applied to the input u(n), to enrich the
reservoir dynamics. The value of xi(n) is then stored in a delay line to be used at a later
time step n+1. The interaction between different neurons can be provided by either having
a slow nonlinear element which couples state xi to the previous states xi−1, xi−2, ... [8], or
by using an instantaneous nonlinear element and desynchronizing the input with respect to
the delay line [10].

2.3 Hardware RC with digital readout

The hardware reservoir computer we use in the present work is identical to the one reported
in [10] (see also [9]). It uses the time-multiplexing with desynchronisation technique de-
scribed in the previous paragraph. We give a brief description of the experimental system,
represented in the left part of Figure 1. It uses a LiNbO3 Mach-Zehnder (MZ) modulator,
operating on a constant power 1560 nm laser, as the nonlinear component. A MZ modulator
is a voltage controlled optoelectronic device; the amount of light that it transmits is a sine
function of the voltage applied to it. The resulting state xi(n) is encoded in a light intensity
level at the MZ output. It is then stored in a spool of optical fiber, acting as delay line of
duration T = 8.5µs, while all the subsequent states xi(n) are being computed by the MZ
modulator. When a state xi(n) reaches the end of the fiber spool it is converted into a
voltage by a photodiode.

The input u(n) is multiplied by the input mask mi and encoded in a voltage level by an
Arbitrary Waveform Generator (AWG). The two voltages corresponding to the state xi(n)
at the end of the fiber spool and the input miu(n) are added, amplified, and the resulting
voltage is used to drive the MZ modulator, thereby producing the state xj(n + 1), and so
on for all values of n.
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In the experiment reported in [10] a portion of the light coming out of the MZ is deviated
to a second photodiode (not shown in Figure 1), that converts it into a voltage and sends
it to a digital oscilloscope. The Mach-Zehnder output can be represented as “steps” of light
intensities of duration θ (see Figure 2a), each one representing the value of a single node
state xi at discrete time n. The value of each xi(n) is recovered by taking an average of the
measured voltage for each state at each time step. The optimal readout weightsWi and bias
Wb are then calculated on a computer from a subset (training set) of the recorded states,
using ridge regression [18], and the output y(n) is then calculated using equation 2 for all
the states collected. The performance of the reservoir is then calculated by comparing the
reservoir output y(n) with the desired output ŷ(n).

3 Analog readout

Readout scheme

Developing an analog readout for the reservoir computer described in section 2 means de-
signing a device that multiplies the reservoir states shown in Figure 2a by the readout
weights Wi, and that sums them together in such a way that the reservoir output y(n)
can be retrieved directly from its output. However, this is not straightforward to do, since
obtaining good performance requires positive and negative readout weights Wi. In optical
implementations [10, 9] the states xi are encoded as light intensities which are always pos-
itive, so they cannot be subtracted one from another. Moreover, the summation over the
states must include only the values of xi pertaining to the same discrete time step n and re-
ject all other values. This is difficult in time-multiplexed reservoirs, where the states xN (n)
and x1(n+ 1) follow seamlessly.

Here we show how to resolve both difficulties using the scheme depicted in the right panel of
Figure 1. Reservoir states encoded as light intensities in the optical reservoir computer and
represented in Figure 2a are fed to the input of a second MZ modulator with two outputs.
A second function generator governs the bias of the second Mach-Zehnder, providing the
modulation voltage V (t). The modulation voltage controls how much of the input light
passing through the readout Mach-Zehnder is sent to each output, keeping constant the
sum of the two output intensities. The two outputs are connected to the two inputs of
a balanced photodiode, which in turn gives as output a voltage level proportional to the
difference of the light intensities received at its two inputs1. This allows us to multiply the
reservoir states by both positive and negative weights.

The time average of the output voltage of the photodiode is obtained by using a capacitor.
The characteristic time of the analog integrator τ is proportional to the capacity C.2 The
role of this time scale is to include in the readout output all the pertinent contributions and
exclude the others. The final output of the reservoir is the voltage across the capacitor at
the end of each discretized time n.

What follows is a detailed description of the readout design.

Multiplication by arbitrary weights

The multiplication of the reservoir states by arbitrary weights, positive or negative, is re-
alized by the second MZ modulator followed by the balanced photodiode. The modulation
voltage V (t) that drives the second Mach Zehnder is piecewise constant, with a step dura-
tion equal to the duration θ of the reservoir states; transitions in voltages and in reservoir
states are synchronized. The modulation voltage is also a periodic function of period θN ,
so that each reservoir state xi(n) is paired with a voltage level Vi that doesn’t depend on
n. The light intensities O1(t) and O2(t) at the two outputs of the Mach-Zehnder modulator

1A balanced photodiode consists of two photodiodes which convert the two light intensities
into two electric currents, followed by an electronic circuit which produces as output a voltage
proportional to the difference of the two currents

2In the case where the impedance of the coaxial cable R = 50Ω is matched with the output
impedance of the photodiode, we have τ = RC

2
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are

O1(t) = I(t)
1 + cos((V (t) + Vbias)

π
Vπ

+ ϕ)

2
, O2(t) = I(t)

1− cos((V (t) + Vbias)
π
Vπ

+ ϕ)

2
,

(3)

where I(t) is the light intensity coming from the reservoir, Vbias is a constant voltage that
drives the modulator, ϕ is an arbitrary, constant phase value, and Vπ is the half-wave
voltage of the modulator. Neglecting the effect of any bandpass filter in the photodiode,
and choosing Vbias appropriately, the output P (t) from the photodiode can be written as

P (t) = G(O1(t)−O2(t)) = I(t)(G sin(
V (t)π

Vπ
)) = I(t)W (t) (4)

with G a constant gain factor. In other words, by setting the right bias and driving the
modulator with a voltage V (t), we multiply the signal I(t) by an arbitrary coefficient W (t).
Note that, if V (t) is piecewise constant, then W (t) is as well. This allows us to achieve the
multiplication of the states xi(n), encoded in the light intensity I(t), by the weights Wi,
just by choosing the right voltage V (t), as shown in Figure 2b.

Summation of weighted states

To achieve the summation over all the states pertaining to the same discrete time step n,
which according to equation 2 will give us the reservoir output minus the bias Wb, we use
the capacitor at the right side of the Output layer in Figure 1. The capacitor provides the
integration of the photodiode output given by eq. 4 with an exponential kernel and time
constant τ . If τ is significantly less than the amount of time θN needed for the system to
process all the nodes relative to a single time step, we can minimize the crosstalk between
node states relative to different time steps.

Let us consider the input I(t) of the readout, and let t = 0 be the instant where the state of
the first node for a given discrete time step n begins to be encoded in I(t) . Using equation
4, we can write the voltage Q(t) on the capacitor at time θN as

Q(θN) = Q(0)e−
θN
τ +

ˆ θN

0

I(s)W (s)e−
θN−s
τ ds (5)

For 0 < t < θN , we have

I(t) = xi(n),W (t) = wi, for θ(i− 1) < t < θi (6)

Integrating equation 5 yields

Q(θN) = Q(0)e−
θN
τ +

N∑
i=1

xi(n)ηiwi, ηi = e−
θ(N−i)

τ (1− e− θ
τ )τ (7)

Equation 7 shows that, at time θN , the voltage on the capacitor is a linear combination of
the reservoir states for the discrete time n, with node-dependent coefficients ηiwi, plus a
residual of the voltage at time 0, multiplied by an extinction coefficient e−

θN
τ . At time 2θN

the voltage on the capacitor would be a linear combination of the states for discrete time
n+ 1, multiplied by the same coefficients, plus a residual of the voltage at time θN , and so
on for all values of n and corresponding multiples of θN .

A simple procedure would encode the weights wi = Wi

ηi
onto the voltage V (t) that drives the

modulator , provide an external, constant biasWb, and have the output y(n) of the reservoir,
defined by equation 2, effectively encoded on the capacitor. This simple procedure would
however be unsatisfactory because unavoidably some of the ηi would be very small, and
therefore the wi would be large, spanning several orders of magnitude. This is undesirable,
as it requires a very precise control of the modulation voltage V (t) in order to recreate all
the wi values, leaving the system vulnerable to noise and to any non-ideal behavior of the
modulator itself.
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Figure 2: a) Reservoir output I(t). The gray line represents the output as measured by
a photodiode and an oscilloscope. We indicated for reference the time θ = 130ns used to
process a single node and the duration θN = 8.36µs of the whole set of states. b) Output
P (t) of the balanced photodiode (see equation 4), with the trace of panel a) as input, before
integration. c) Voltage Q(t) on the capacitor for the same input (see equation 5). The
integration time τ is indicated for reference. The black dots indicate the values at the end
of each discretized time n, taken as the output y(n)of the analog readout.

To mitigate this, we adapt the training algorithm based on ridge regression to our case. We
redefine the reservoir states as ξi(n) = xi(n)ηi; we then calculate the weights ωi that, applied
to the states ξi, give the best approximation to the desired output ŷ(n). The advantage here
is that ridge regression keeps the norm of the weight vector to a minimum; by redefining
the states, we can take the ηi into account without having big values of wi that force us to
be extremely precise in generating the readout weights.

A sample trace of the voltage on the capacitor is shown in Figure 2c.

Hardware implementation

To implement the analog readout, we started from the experimental architecture described
in Section 2, and we added the components depicted in the right part of Figure 1. For the
weight multiplication, we used a second Mach-Zehnder modulator (Photline model MXDO-
LN-10 with bandwidth in excess of 10GHz and Vπ = 5.9V ), driven by a Tabor 2074 Arbitrary
Waveform Generator (maximum sampling rate 200 MSamples/s). The two outputs of the
modulator were fed into a balanced photodiode (Terahertz technologies model 527 InGaAs
balanced photodiode, bandwidth set to 125MHz, response set to 1000V/W), whose out-
put was read by the National Instruments PXI digital acquisition card (sampling rate 200
MSamples/s).

In most of the experimental results described here, the capacitor at the end of the circuit
was simulated and not physically inserted into the circuit: this allowed us to quickly cycle
in our experiments through different values of τ without taking apart the circuit every
time. The external bias Wb to the output, introduced in equation 2, was also provided
after the readout. The reasoning behind these choices is that both these implementations
are straightforward, while the use of a modulator and a balanced photodiode as a weight
generator is more complex: we chose to focus on the latter issue for now, as our goal is to
validate the proposed architecture.

4 Results

As a benchmark for our analog readout, we use a wireless channel equalization task, intro-
duced in 1994 [19] to test adaptive bilinear filtering and subsequently used by Jaeger [16] to
show the capabilities of reservoir computing. This task is becoming a standard benchmark
task in the reservoir computing community, and has been used for example in [20]. It con-
sists in recovering a sequence of symbols transmitted along a wireless channel, in presence
of multiple reflections, noise and nonlinear distortion; a more detailed description of the
task can be found in the Appendix. The performance of the reservoir is usually measured
in Symbol Error Rate (SER), i.e. the rate of misinterpreted symbols, as a function of the
amount of noise in the wireless channel.
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Figure 3: Performance of the analog readout. Left: Performance as a function of the input
SNR, for a reservoir of 28 nodes, with τ/θN = 0.18. Middle: Performance for the same
task, for a reservoir of 64 nodes, τ/θN = 0.18. Right: Performance as a function of the
ratio τ/θN , at constant input noise level (28 dB SNR) for a reservoir of 64 nodes. The
performance is measured in Signal Error Rate (SER). Blue triangles: reservoir with digital
readout. Red squares: reservoir with ideal analog readout. Black circles: reservoir with
experimental analog readout (simulated capacitor). Purple stars in the left panel: reservoir
where a physical capacitor has been used.

Figure 3 shows the performance of the experimental setup of [10] for a network of 28 nodes
and one of 64 nodes, for different amounts of noise. For each noise level, three quantities
are presented. The first is the performance of the reservoir with a digital readout (blue
triangles), identical to the one used in [10]. The second is the performance of a simulated,
ideal analog readout, which takes into account the effect of the ηi coefficients introduced in
equation 7, but no other imperfection. It produces as output the discrete sum ωb+

∑N
i=1 ξiωi

(red squares). This is, roughly speaking, the goal performance for our experimental readout.
The third and most important is the performance of the reservoir as calculated on real data
taken from the analog reservoir with the analog output, with the effect of the continuous
capacitive integration computed in simulation (black circles).

As can be seen from the figure, the performance of the analog readout is fairly close to its
ideal value, although it is significantly worse than the performance of the digital readout.
However, it is already better than the non-reservoir methods reported in [19] and used by
Jaeger as benchmarks in [16]. It can also handle higher signal-to-noise ratios. As expected,
networks with more nodes have better performance; it should be noted, however, that in
experimental reservoirs the number of nodes cannot be raised over a certain threshold.
The reason is that the total loop time θN is determined by the experimental hardware
(specifically, the length of the delay line); as N increases, the length θ of each node must
decrease. This leaves the experiment vulnerable to noise and bandpass effect, that may
lead, for example, to an incorrect discretization of the xi(n) values, and an overall worse
performance.

We did test our readout with a 70nF capacitor, with a network of 28 nodes, to prove that the
physical implementation of our concept is feasible: the performance of this setup is shown
in the left panel of Figure 3. The results are comparable to those obtained in simulation,
even if, at low levels of noise in the input, the performance of the physical setup is slightly
worse.

The rightmost panel of figure 3 shows the effects of the choice of the capacitor at the end
of the circuit, and therefore of the value of τ . The plot represents the performance at 28
dB SNR for a network of 64 nodes, for different values of the ratio τ/θN , obtained by
averaging the results of 10 tests. It is clear that the choice of τ has a complicated effect on
the readout performance; however, some general rules may be inferred. Too small values
of τ mean that the contribution from the very first nodes is vanishingly small, effectively
decreasing the reservoir dimensionality, which has a strong impact on the performance both
of the ideal and the experimental reservoir. On the other hand, larger values of τ impact
the performance of the experimental readout, as the residual term in equation 7 gets larger.
A compromise value of τ/θN = 0.222 seems to give the best result, corresponding in our
case to a capacity of about 70 nF.
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5 Discussion

To our knowledge, the system presented here is the first analog readout for an experimental
reservoir computer. While the results presented here are preliminary, and there is much
optimization of experimental parameters to be done, the system already outperforms non-
reservoir methods. We expect to extend easily this approach to different tasks, already
studied in [9, 10], including a spoken digit recognition task on a standard dataset[22].

Further performance improvements can reasonably be expected from fine-tuning of the train-
ing parameters: for instance the amount of regularization in the ridge regression procedure,
that here is left constant at 1·10−4, should be tuned for best performance. Adaptive training
algorithms, such as the ones mentioned in [21], could also take into account nonidealities in
the readout components. Moreover the choice of τ, as Figure 3 shows, is not obvious and a
more extensive investigation could lead to better performance.

The architecture proposed here is simple and quite straightforward to realize; it can be
added at the output of any preexisting time multiplexing reservoir with minimal effort. The
capacitor at the end of the circuit could be substituted with an active electronic circuit
performing the summation of the incoming signal before resetting itself. This would elimi-
nate the problem of residual voltages, and allow better performance at the cost of increased
complexity of the readout.

The main interest of the analog readout is that it allows optoelectronic reservoir computers
to fully leverage their main characteristic, which is the speed of operation. Indeed, removing
the need for slow, offline postprocessing is indicated in [13] as one of the major challenges
in the field. Once the training is finished, optoelectronic reservoirs can process millions of
nonlinear nodes per second [10]; however, in the case of a digital readout, the node states
must be recovered and postprocessed to obtain the reservoir outputs. It takes around 1.6
seconds for the digital readout in our setup to retrieve and digitize the states generated by a
9000 symbol input sequence. The analog readout removes the need for postprocessing, and
can work at a rate of about 8.5 µs per input symbol, five orders of magnitude faster than
the electronic reservoir reported in [8].

Finally, having an analog readout opens the possibility of feedback - using the output of the
reservoir as input or part of an input for the successive time steps. This opens the way for
different tasks to be performed [15] or different training techniques to be employed [14].

Appendix: Nonlinear Channel Equalization task

What follows is a detailed description of the channel equalization task. The goal is to
reconstruct a sequence d(n) of symbols taken from {−3,−1, 1, 3}. The symbols in d(n) are
mixed together in a new sequence q(n) given by

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1) + d(n) + 0.18d(n− 1)− 0.1d(n-2) (8)
+0.091d(n− 3)-0.05d(n− 4) + 0.04d(n− 5) + 0.03d(n− 6) + 0.01d(n-7)

which models a wireless signal reaching a receiver through different paths with different
traveling times. A noisy, distorted version u(n) of the mixed signal q(n), simulating the
nonlinearities and the noise sources in the receiver, is created by having u(n) = q(n) +
0.036q(n)2 − 0.011q(n)3 + ν(n), where ν(n) is an i.i.d. Gaussian noise with zero mean
adjusted in power to yield signal-to-noise ratios ranging from 12 to 32 dB. The sequence
u(n) is then fed to the reservoir as an input; the output of the readout R(n) is rounded off to
the closest value among {−3,−1, 1, 3}, and then compared to the desired symbol d(n). The
performance is usually measured in Signal Error Rate (SER), or the rate of misinterpreted
symbols.
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