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Abstract

We present a new algorithm for differentially private data release, based on a sim-
ple combination of the Multiplicative Weights update rule with the Exponential
Mechanism. Our MWEM algorithm achieves what are the best known and nearly
optimal theoretical guarantees, while at the same time being simple to implement
and experimentally more accurate on actual data sets than existing techniques.

1 Introduction

Sensitive statistical data on individuals are ubiquitous, and publishable analysis of such private data
is an important objective. When releasing statistics or synthetic data based on sensitive data sets, one
must balance the inherent tradeoff between the usefulness of the released information and the pri-
vacy of the affected individuals. Against this backdrop, differential privacy [1, 2, 3] has emerged as a
compelling privacy definition that allows one to understand this tradeoff via formal, provable guaran-
tees. In recent years, the theoretical literature on differential privacy has provided a large repertoire
of techniques for achieving the definition in a variety of settings (see, e.g., [4, 5]). However, data an-
alysts have found that several algorithms for achieving differential privacy add unacceptable levels
of noise.

In this work we develop a broadly applicable, simple, and easy-to-implement algorithm, capable of
substantially improving the performance of linear queries on many realistic datasets. Linear queries
are equivalent to statistical queries (in the sense of [6]) and can serve as the basis of a wide range of
data analysis and learning algorithms (see [7] for some examples).

Our algorithm is a combination of the Multiplicative Weights approach of [8, 9], maintaining and
correcting an approximating distribution through queries on which the approximate and true datasets
differ, and the Exponential Mechanism [10], which selects the queries most informative to the Multi-
plicative Weights algorithm (specifically, those most incorrect vis-a-vis the current approximation).
One can view our approach as combining expert learning techniques (multiplicative weights) with
an active learning component (via the exponential mechanism).

We present experimental results for differentially private data release for a variety of problems stud-
ied in prior work: range queries as studied by [11, 12], contingency table release across a collection
of statistical benchmarks as in [13], and datacube release as studied by [14]. We empirically eval-
uate the accuracy of the differentially private data produced by MWEM using the same query class
and accuracy metric proposed by each of the corresponding prior works, improving on all. Be-
yond empirical improvements in these settings, MWEM matches the best known and nearly optimal
theoretical accuracy guarantees for differentially private data analysis with linear queries.

⇤Computer Science Department, Cornell University. Work supported in part by an NSF Computing Inno-
vation Fellowship (NSF Award CNF-0937060) and an NSF Mathematical Sciences Postdoctoral Fellowship
(NSF Award DMS-1004416).
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Finally, we describe a scalable implementation of MWEM capable of processing datasets of sub-
stantial complexity. Producing synthetic data for the classes of queries we consider is known to be
computationally hard in the worst-case [15, 16]. Indeed, almost all prior work performs computa-
tion proportional to the size of the data domain, which limits them to datasets with relatively few
attributes. In contrast, we are able to process datasets with thousands of attributes, corresponding to
domains of size 2

1000. Our implementation integrates a scalable parallel implementation of Multi-
plicative Weights, and a representation of the approximating distribution in a factored form that only
exhibits complexity when the model requires it.

2 Our Approach

The MWEM algorithm (Figure 1) maintains an approximating distribution over the domain D of
data records, scaled up by the number of records. We repeatedly improve the accuracy of this ap-
proximation with respect to the private dataset and the desired query set by selecting and posing a
query poorly served by our approximation and improving the approximation to better reflect the true
answer to this query. We select and pose queries using the Exponential [10] and Laplace Mecha-
nisms [3], whose definitions and privacy properties we review in Subsection 2.1. We improve our
approximation using the Multiplicative Weights update rule [8], reviewed in Subsection 2.2.

2.1 Differential Privacy and Mechanisms

Differential privacy is a constraint on a randomized computation that the computation should not
reveal specifics of individual records present in the input. It places this constraint by requiring the
mechanism to behave almost identically on any two datasets that are sufficiently close.

Imagine a dataset A whose records are drawn from some abstract domain D, and which is described
as a function from D to the natural numbers N, with A(x) indicating the frequency (number of
occurrences) of x in the dataset. We use kA � Bk to indicate the sum of the absolute values of
difference in frequencies (how many records would have to be added or removed to change A to B).
Definition 2.1 (Differential Privacy). A mechanism M mapping datasets to distributions over an
output space R provides (", �)-differential privacy if for every S ✓ R and for all data sets A,B
where kA�Bk  1,

Pr[M(A) 2 S]  e" Pr[M(B) 2 S] + � .

If � = 0 we say that M provides "-differential privacy.

The Exponential Mechanism [10] is an "-differentially private mechanism that can be used to select
among the best of a discrete set of alternatives, where “best” is defined by a function relating each
alternative to the underlying secret data. Formally, for a set of alternative results R, we require
a quality scoring function s : dataset ⇥ R ! R, where s(B, r) is interpreted as the quality of
the result r for the dataset B. To guarantee "-differential privacy, the quality function is required
to satisfy a stability property: that for each result r the difference |s(A, r) � s(B, r)| is at most
kA�Bk. The Exponential Mechanism E simply selects a result r from the distribution satisfying

Pr[E(B) = r] / exp("⇥ s(B, r)/2).

Intuitively, the mechanism selects result r biased exponentially by its quality score. The Exponential
Mechanism takes time linear in the number of possible results, evaluating s(B, r) once for each r.

A linear query (also referred to as counting query or statistical query) is specified by a function q
mapping data records to the interval [�1,+1]. The answer of a linear query on a data set D, denoted
q(B), is the sum

P
x2D

q(x)⇥B(x).

The Laplace Mechanism is an "-differentially private mechanism which reports approximate sums
of bounded functions across a dataset. If q is a linear query, the Laplace Mechanism L obeys

Pr[L(B) = r] / exp (�"⇥ |r � q(B)|)
Although the Laplace Mechanism is an instance of the Exponential Mechanism, it can be imple-
mented much more efficiently, by adding Laplace noise with parameter 1/" to the value q(B). As
the Laplace distribution is exponentially concentrated, the Laplace Mechanism provides an excellent
approximation to the true sum.
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Inputs: Data set B over a universe D; Set Q of linear queries; Number of iterations T 2 N; Privacy
parameter " > 0; Number of records n.

Let A0 denote n times the uniform distribution over D.
For iteration i = 1, ..., T :

1. Exponential Mechanism: Select a query q
i

2 Q using the Exponential Mechanism param-
eterized with epsilon value "/2T and the score function

s
i

(B, q) = |q(A
i�1)� q(B)| .

2. Laplace Mechanism: Let measurement m
i

= q
i

(B) + Lap(2T/").

3. Multiplicative Weights: Let A
i

be n times the distribution whose entries satisfy

A
i

(x) / A
i�1(x)⇥ exp(q

i

(x)⇥ (m
i

� q
i

(A
i�1))/2n) .

Output: A = avg
i<T

A
i

.

Figure 1: The MWEM algorithm.

2.2 Multiplicative Weights Update Rule

The Multiplicative Weights approach has seen application in many areas of computer science. Here
we will use it as proposed in Hardt and Rothblum [8], to repeatedly improve an approximate dis-
tribution to better reflect some true distribution. The intuition behind Multiplicative Weights is that
should we find a query whose answer on the true data is much larger than its answer or the approx-
imate data, we should scale up the approximating weights on records contributing positively and
scale down the weights on records contributing negatively. If the true answer is much less than the
approximate answer, we should do the opposite.

More formally, let q be a linear query. If A and B are distributions over the domain D of records,
where A is a synthetic distribution intended to approximate a true distribution B with respect to
query q, then the Multiplicative Weights update rule recommends updating the weight A places on
each record x by:

A
new

(x) / A(x)⇥ exp(q(x)⇥ (q(B)� q(A))/2) .

The proportionality sign indicates that the approximation should be renormalized after scaling.
Hardt and Rothblum show that each time this rule is applied, the relative entropy between A and B
decreases by an additive (q(A) � q(B))

2. As long as we can continue to find queries on which the
two disagree, we can continue to improve the approximation.

2.3 Formal Guarantees

As indicated in the introduction, the formal guarantees of MWEM represent the best known theoret-
ical results on differentially private synthetic data release. We first describe the privacy properties.
Theorem 2.1. MWEM satisfies "-differential privacy.

Proof. The composition rules for differential privacy state that " values accumulate additively. We
make T calls to the Exponential Mechanism with parameter ("/2T ) and T calls to the Laplace
Mechanism with parameter ("/2T ), resulting in "-differential privacy.

We now bound the worst-case performance of the algorithm, in terms of the maximum error between
A and B across all q 2 Q. The natural range for q(A) is [�n,+n], and we see that by increasing T
beyond 4 log |D| we can bring the error asymptotically smaller than n.
Theorem 2.2. For any dataset B, set of linear queries Q, T 2 N, and " > 0, with probability at
least 1� 2T/|Q|, MWEM produces A such that

max

q2Q

|q(A)� q(B)|  2n

r
log |D|

T
+

10T log |Q|
"

.
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Proof. The proof of this theorem is an integration of pre-existing analyses of both the Exponential
Mechanism and the Multiplicative Weights update rule, omitted for reasons of space.

Note that these bounds are worst-case bounds, over adversarially chosen data and query sets. We
will see in Section 3 that MWEM works very well in more realistic settings.

2.3.1 Running time

The running time of our basic algorithm as described in Figure 1 is O(n|Q| + T |D||Q|)). The al-
gorithm is embarrassingly parallel: query evaluation can be conducted independently, implemented
using modern database technology; the only required serialization is that the T steps must proceed
in sequence, but within each step essentially all work is parallelizable.

Results of Dwork et al. [17] show that for worst case data, producing differentially private synthetic
data for a set of counting queries requires time |D|0.99 under reasonable cryptographic hardness
assumptions. Moreover, Ullman and Vadhan [16] showed that similar lower bounds also hold for
more basic query classes such as we consider in Section 3.2. Despite these hardness results, we
provide an alternate implementation of our algorithm in Section 4 and demonstrate that its running
time is acceptable on real-world data even in cases where |D| is as large as 2

77, and on simple
synthetic input datasets where |D| is as large as 21000.

2.3.2 Improvements and Variations

There are several ways to improve the empirical performance of MWEM at the expense of the
theoretical guarantees. First, rather than use the average of the distributions A

i

we use only the
final distribution. Second, in each iteration we apply the multiplicative weights update rule for all
measuments taken, multiple times; as long as any measurements do not agree with the approximating
distribution (within error) we can improve the result. Finally, it is occasionally helpful to initialize
A0 by performing a noisy count for each element of the domain; this consumes from the privacy
budget and lessens the accuracy of subsequent queries, but is often a good trade-off.

2.4 Related Work

The study of differentially private synthetic data release mechanisms for arbitrary counting queries
began with the work of Blum, Ligett, and Roth [18], who gave a computationally inefficient (su-
perpolynomial in |D|) "-differentially private algorithm that achieves error that scales only logarith-
mically with the number of queries. The dependence on n and |Q| achieved by their algorithm is
O(n2/3

log

1/3 |Q|) (which is the same dependence achieved by optimizing the choice of T in Theo-
rem 2.2). Since [18], subsequent work [17, 19, 20, 8] has focused on computationally more efficient
algorithms (i.e., polynomial in |D|) as well as algorithms that work in the interactive query setting.
The latest of these results is the private Multiplicative Weights method of Hardt and Rothblum [8]
which achieves error rates of O(

p
n log(|Q|)) for (", �)-differential privacy (which is the same

dependence achieved by applying k-fold adaptive composition [19] and optimizing T in our Theo-
rem 2.2). While their algorithm works in the interactive setting, it can also be used non-interactively
to produce synthetic data, albeit at a computational overhead of O(n). MWEM can also be cast as
an instance of a more general Multiplicative-Weights based framework of Gupta et al. [9], though
our specific instantiation and its practical appeal were not anticipated in their work.

Prior work on linear queries includes Fienberg et al. [13] and Barak et al. [21] on contingency tables;
Li et al. [22] on range queries (and substantial related work [23, 24, 22, 11, 12, 25] which Li and
Miklau [11, 25] show can all be seen as instances of the matrix mechanism of [22]); and Ding et
al. [14] on data cubes. In each case, MWEM’s theoretical guarantees and experimental performance
improve on prior work. We compare further in Section 3.

3 Experimental Evaluation

We evaluate MWEM across a variety of query classes, datasets, and metrics as explored by prior
work, demonstrating improvement in the quality of approximation (often significant) in each case.
The problems we consider are: (1) range queries under the total squared error metric, (2) binary
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contingency table release under the relative entropy metric, and (3) datacube release under the aver-
age absolute error metric. Although contingency table release and datacube release are very similar,
prior work on the two have had different focuses: small datasets over many binary attributes vs. large
datasets over few categorical attributes, low-order marginals vs. all cuboids as queries, and relative
entropy vs. the average error within a cuboid as metrics.

Our general conclusion is that intelligently selecting the queries to measure can result in significant
accuracy improvements, in settings where accuracy is a scare resource. When the privacy parameters
are very lax, or the query set very simple, direct measurement of all queries yields better results than
expending some fraction of the privacy budget determining what to measure. On the other hand, in
the more challenging case of restrictions on privacy for complex data and query sets, MWEM can
substantially out-perform previous algorithms.

3.1 Range Queries

A range query over a domain D = {1, . . . , N} is a counting query specified by the indicator function
of an interval I ✓ D. Over a multi-dimensional domain D = D1 ⇥ . . . D

d

a range query is
defined by the product of indicator functions. Differentially private algorithms for range queries
were specifically considered by [18, 23, 24, 22, 11, 12, 25]. As noted in [11, 25], all previously
implemented algorithms for range queries can be seen as instances of the matrix mechanism of [22].
Moreover, [11, 25] show a lower bound on the total squared error achieved by the matrix mechanism
in terms of the singular values of a matrix associated with the set of queries. We refer to this bound
as the SVD bound.
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Figure 2: Comparison of MWEM with the SVD lower bound on four data sets. The y-axis measures
the average squared error per query, averaged over 5 independent repetitions of the experiment,
as epsilon varies. The improvement is most significant for small epsilon, diminishing as epsilon
increases.

We empirically evaluate MWEM for range queries on restrictions of the Adult data set [26] to (a)
the “capital loss” attribute, and (b) the “age” and “hours” attributes, as well as the restriction of
the Blood Transfusion data set [26, 27] to (c) the “recency” and “frequency” attributes, and (d) the
“monetary” attribute. We chose these data sets as they feature numerical attributes of suitable size.
In Figure 2, we compare the performance of MWEM on sets of randomly chosen range queries
against the SVD lower bound proved by [11, 25], varying " while keeping the number of queries
fixed. The SVD lower bound holds for algorithms achieving the strictly weaker guarantee of (", �)-
differential privacy with � > 0, permitting some probability � of unbounded disclosure. The SVD
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Figure 3: Relative entropy (y-axis) as a function of epsilon (x-axis) for the mildew, rochdale, and
czech datasets, respectively. The lines represent averages across 100 runs, and the corresponding
shaded areas one standard deviation in each direction. Red (dashed) represents the modified Barak
et al. [21] algorithm, green (dot-dashed) represents unoptimized MWEM, and blue (solid) represents
the optimized version thereof. The solid black horizontal line is the stated relative entropy values
from Fienberg et al. [13].

bound depends on �; in our experiments we fixed � = 1/n when instantiating the SVD bound, as
any larger value of � permits mechanisms capable of exact release of individual records.

3.2 Contingency Tables

A contingency table can be thought of as a table of records over d binary attributes, and the k-way
marginals of a contingency table correspond to the

�
d

k

�
possible choices of k attributes, where each

marginal is represented by the 2

k counts of the records with each possible setting of attributes. In
previous work, Barak et al. [21] describe an approach to differentially private contingency table re-
lease using linear queries defined by the Hadamard matrix. Importantly, all k-dimensional marginals
can be exactly recovered by examination of relatively few such queries: roughly

�
d

k

�
out of the pos-

sible 2

d, improving over direct measurement of the marginals by a factor of 2k. This algorithm is
evaluated by Fienberg et al. [13], and was found to do poorly on several benchmark datasets.

We evaluate our approximate dataset following Fienberg et al. [13] using relative entropy, also
known as the Kullback-Leibler (or KL) divergence. Formally, the relative entropy between our two
distributions (A/n and B/n) is

RE(B||A) =

X

x2D

B(x) log(B(x)/A(x))/n .

We use several statistical datasets from Fienberg et al. [13], and evaluate two variants of MWEM
(both with and without initialization of A0) against a modification of Barak et al. [21] which com-
bines its observations using multiplicative weights (we find that without this modification, [21] is
terrible with respect to relative entropy). These experiments are therefore largely assessing the se-
lective choice of measurements to take, rather than the efficacy of multiplicative weights.

Figure 3 presents the evaluation of MWEM on several small datasets in common use by statisticians.
Our findings here are fairly uniform across the datasets: the ability to measure only those queries
that are informative about the dataset results in substantial savings over taking all possible measure-
ments. In many cases MWEM approaches the good non-private values of [13], indicating that we
can approach levels of accuracy at the limit of statistical validity.

We also consider a larger dataset, the National Long-Term Care Study (NLTCS), in Figure 4. This
dataset contains orders of magnitudes more records, and has 16 binary attributes. For our initial set-
tings, maintaining all three-way marginals, we see similar behavior as above: the ability to choose
the measurements that are important allows substantially higher accuracy on those that matter. How-
ever, we see that the algorithm of Barak et al. [21] is substantially more competitive in the regime
where we are interested in querying all two-dimensional marginals, rather than the default three we
have been using. In this case, for values of epsilon at least 0.1, it seems that there is enough signal
present to simply measure all corresponding entries of the Hadamard transform; each is sufficiently
informative that measuring substantially fewer at higher accuracy imparts less information, rather
than more.
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Figure 4: Curves comparing our approach with that of Barak et al. on the National Long Term Care
Survey. The red (dashed) curve represents Barak et al, and the multiple blue (solid) curves represent
MWEM, with 20, 30, and 40 queries (top to bottom, respectively). From left to right, the first two
figures correspond to degree 2 marginals, and the third to degree 3 marginals. As before, the x-
axis is the value of epsilon guaranteed, and the y-axis is the relative entropy between the produced
distribution and actual dataset. The lines represent averages across only 10 runs, owing to the high
complexity of Barak et al. on this many-attributed dataset, and the corresponding shaded areas one
standard deviation in each direction.

3.3 Data Cubes

We now change our terminology and objectives, shifting our view of contingency tables to one of
datacubes. The two concepts are interchangeable, a contingency table corresponding to the datacube,
and a marginal corresponding to its cuboids. However, the datasets studied and the metrics applied
are different. We focus on the restriction of the Adult dataset [26] to its eight categorical attributes,
as done in [14], and evaluate our approximations using average error within a cuboid, also as in [14].

Although MWEM is defined with respect to a single query at a time, it generalizes to sets of counting
queries, as reflected in a cuboid. The Exponential Mechanism can select a cuboid to measure using
a quality score function summing the absolute values of the errors within the cells of the cuboid. We
also (heuristically) subtract the number of cells from the score of a cuboid to bias the selection away
from cuboids with many cells, which would collect Laplace error in each cell. This subtraction
does not affect privacy properties. An entire cuboid can be measured with a single differentially
private query, as any record contributes to at most one cell (this is a generalization of the Laplace
Mechanism to multiple dimensions, from [3]). Finally, Multiplicative Weights works unmodified,
increasing and decreasing weights based on the over- or under-estimation of the count to which the
record contributes.
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Figure 5: Comparison of MWEM with the custom approaches from [14], varying epsilon through
the reported values from [14]. Each cuboid (marginal) is assessed by its average error, and either the
average or maximum over all 256 marginals is taken to evaluate the technique.

We compare MWEM with the work of [14] in Figure 5. The average average error improves notice-
ably, by approximately a factor of four. The maximum average error is less clear; experimentally
we have found we can bring the numbers lower using different heuristic variants of MWEM, but
without principled guidance we report only the default behavior. Of note, our results are achieved
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by a single algorithm, whereas the best results for maximum and average error in [14] are achieved
by two different algorithms, each designed to optimize one specific metric.

4 A Scalable Implementation

The implementation of MWEM used in the previous experiments quite literally maintains a distri-
bution A

i

over the elements of the universe D. As the number of attributes grows, the universe D
grows exponentially, and it can quickly become infeasible to track the distribution explicitly. In
this section, we consider a scalable implementation with essentially no memory footprint, whose
running time is in the worst case proportional to |D|, but which for many classes of simple datasets
remains linear in the number of attributes.

Recall that the heart of MWEM maintains a distribution A
i

over D that is then used in the Ex-
ponential Mechanism to select queries poorly approximated by the current distribution. From the
definition of the Multiplicative Weights distribution, we see that the weight A

i

(x) can be determined
from the history H

i

= {(q
j

,m
j

) : j  i}:

A
i

(x) / exp

0

@
X

ji

q
j

(x)⇥ (m
j

� q
j

(A
j�1))/2n

1

A .

We explicitly record the scaling factors l
j

= m
j

� q
j

(A
j�1) as part of the history H

i

=

{(q
j

,m
j

, l
j

) : j  i}, to remove the dependence on prior A
j

.

The domain D is often the product of many attributes. If we partition these attributes into disjoint
parts D1, D2, . . . Dk

so that no query in H
i

involves attributes from more than one part, then the
distribution produced by Multiplicative Weights is a product distribution over D1⇥D2⇥. . . D

k

. For
query classes that factorize over the attributes of the domain (for example, range queries, marginal
queries, and cuboid queries) we can rewrite and efficiently perform the integration over D using

X

x2D1⇥D2⇥...Dk

q(x)⇥A
i

(x) =
Y

1jk

0

@
X

xj2Dj

q(x
j

)⇥Aj

i

(x
j

)

1

A .

where Aj

i

is a mini Multiplicative Weights over attributes in part D
j

, using only the relevant queries
from H

i

. So long as the measurements taken reflect modest groups of independent attributes, the
integration can be efficiently performed. As the measurements overlap more and more, additional
computation or approximation is required. The memory footprint is only the combined size of the
data, query, and history sets.

Experimentally, we are able to process a binarized form of the Adult dataset with 27 attributes ef-
ficiently (taking 80 seconds to process completely), and the addition of 50 new independent binary
attributes, corresponding to a domain of size 277, results in neglible performance impact. For a sim-
ple synthetic dataset with up to 1,000 independent binary attributes, the factorized implementation
of MWEM takes only 19 seconds to for a complete execution.

5 Conclusions

We introduced MWEM, a simple algorithm for releasing data maintaining a high fidelity to the
protected source data, as well as differential privacy with respect to the records. The approach builds
upon the Multiplicative Weights approach of [8, 9], by introducing the Exponential Mechanism [10]
as a more judicious approach to determining which measurements to take. The theoretical analysis
matches previous work in the area, and experimentally we have evidence that for many interesting
settings, MWEM represents a substantial improvement over existing techniques.

As well as improving on experimental error, the algorithm is both simple to implement and simple
to use. An analyst does not require a complicated mathematical understanding of the nature of the
queries (as the community has for linear algebra [11] and the Hadamard transform [21]), but rather
only needs to enumerate those measurements that should be preserved. We hope that this generality
leads to a broader class of high-fidelity differentially-private data releases across a variety of data
domains.

8



References
[1] I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS, 2003.
[2] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned databases. In

CRYPTO. Springer, 2004.
[3] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.

In TCC, 2006.
[4] Cynthia Dwork. The differential privacy frontier (extended abstract). In TCC, 2009.
[5] Cynthia Dwork. The promise of differential privacy: A tutorial on algorithmic techniques. In FOCS,

2011.
[6] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),

45(6):983–1006, 1998.
[7] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ frame-

work. In Proc. 24th PODS, pages 128–138. ACM, 2005.
[8] Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for interactive privacy-preserving

data analysis. In FOCS, 2010.
[9] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jon Ullman. Privately releasing conjunctions and the

statistical query barrier. In STOC, 2011.
[10] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.
[11] Chao Li and Gerome Miklau. Efficient batch query answering under differential privacy. CoRR,

abs/1103.1367, 2011.
[12] Chao Li and Gerome Miklau. An adaptive mechanism for accurate query answering under differential

privacy. to appear, PVLDB, 2012.
[13] Stephen E. Fienberg, Alessandro Rinaldo, and Xiolin Yang. Differential privacy and the risk-utility trade-

off for multi-dimensional contingency tables. In Privacy in Statistical Databases, 2010.
[14] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. Differentially private data cubes: optimizing

noise sources and consistency. In SIGMOD, 2011.
[15] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the complexity

of differentially private data release: efficient algorithms and hardness results. In STOC, 2009.
[16] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private synthetic data. In

TCC, 2011.
[17] C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of differentially

private data release: efficient algorithms and hardness results. In STOC, 2009.
[18] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database

privacy. In STOC, 2008.
[19] Cynthia Dwork, Guy Rothblum, and Salil Vadhan. Boosting and differential privacy. In FOCS, 2010.
[20] Aaron Roth and Tim Roughgarden. The median mechanism: Interactive and efficient privacy with multi-

ple queries. In STOC, 2010.
[21] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consis-

tency too: a holistic solution to contingency table release. In PODS, 2007.
[22] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under

differential privacy. In PODS, 2010.
[23] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet transforms. IEEE

Transactions on Knowledge and Data Engineering, 23:1200–1214, 2011.
[24] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of differentially-

private queries through consistency. In VLDB, 2010.
[25] Chao Li and Gerome Miklau. Measuring the achievable error of query sets under differential privacy.

CoRR, abs/1202.3399v2, 2012.
[26] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[27] I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting. Knowledge discovery on RFM model using Bernoulli

sequence. Expert Systems with Applications, 36(3), 2008.

9


