
Supplementary Material for Accelerated Training for
Matrix-norm Regularization: A Boosting Approach

A Proof of Theorem 1

In this section we prove the O(1/ε) convergence rate of the boosting Algorithm 1.

Theorem 1 (Rate of convergence) Under Assumption 1, Algorithm 1 finds an ε accurate solution
to (5) in O(1/ε) number of steps. More precisely, denoting f∗ as the minimum of (5), then

f({σ(k)
i , A

(k)
i })− f

∗ ≤ 4CL
k + 2

.

Proof: Denoting s∗ =
∑
i σ
∗
i , where recall that {A∗i , σ∗i } is some optimal solution to (5). Our proof

is based upon the following observation:

f∗ = min
Ai∈A,σi≥0

L

(∑
i

σiAi

)
+ λ

∑
i

σi

= min
Y ∈s∗K

L(Y ) + λs∗, (19)

where K is the convex hull of the set A.

Let sk :=
∑
i σ

(k)
i . We prove Theorem 1 for a “weaker” version of Algorithm 1, where ak is set to

some constant 1− ηk. The following chain of inequalities consists the main part of our proof.
f(Xk) = L(Xk) + λsk

(Definition of Xk, sk) = min
ρ≥0

L ((1− ηk)Xk−1 + ρηkHk) + λ(1− ηk)sk−1 + λρηk (20)

≤ L((1− ηk)Xk−1 + ηk(s∗Hk)) + λ(1− ηk)sk−1 + λs∗ηk

(Assumption 1) ≤ f(Xk−1) + ηk 〈s∗Hk −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(21)

(Definition of Hk) ≤ min
Y ∈s∗·A

f(Xk−1) + ηk 〈Y −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(Linearity) ≤ min
Y ∈s∗·K

f(Xk−1) + ηk 〈Y −Xk−1,∇L(Xk−1)〉+
CL
2
η2
k − ληksk−1 + ληks

∗

(22)

(Convexity of L) ≤ min
Y ∈s∗·K

f(Xk−1) + ηk(L(Y )− L(Xk−1)) +
CL
2
η2
k − ληksk−1 + ληks

∗

(Rearrangement) = (1− ηk)f(Xk−1) + ηk min
Y ∈s∗·K

(
L(Y ) + λs∗

)
+
CL
2
η2
k

(Observation (19)) = (1− ηk)f(Xk−1) + ηkf
∗ +

CL
2
η2
k,

hence
f(Xk)− f∗ ≤ (1− ηk)(f(Xk−1)− f∗) +

CL
2
η2
k.

Setting ηk = 2
k+2 , and an easy induction argument establishes that

f(Xk)− f∗ ≤ 4CL
k + 2

.

The proof, although completely elementary, does harness several interesting ideas. Note first that in,
say, the analysis of the ordinary gradient algorithm, one usually upper bounds the convex function
L by its quadratic expansion

L(Y ) ≤ L(X) + 〈Y −X,∇L(X)〉+
ĈL
2
‖Y −X‖2,
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and then tries to minimize the quadratic upper bound; while in contrast, our analysis above takes
perhaps a surprisingly loose step: upper bound L by the linear function

L(y) ≤ L(x) + 〈Y −X,∇L(X)〉+
CL
2
.

The (huge) gain, of course, is the possibility of inequality (22), which allows us to select the next
update by optimizing over the (potentially much simpler) set A, instead of the convex hull K.

The next key ingredient in the proof is our observation (19), which is completely trivial, yet after
combining it with the one dimensional line search over ρ ≥ 0 (or b in Algorithm 1), Algorithm 1
behaves as if it knew the unknown but fixed constant s∗.

Some remarks regarding to Theorem 1 are in order.

• If the loss function L is only Lipchitz continuous, then one can apply the “smoothing” trick
[35] to get O( 1

ε2 ) convergence rate for algorithm 1.
• Our result heavily builds on previous work [10, 18], however, it seems that our treatment is

slightly more general. For instance, the `1 norm regularizer
∑
i σi can be readily replaced

by h(
∑
i σi), where h : R+ → R is some convex function. Essentially the same proof

would still go through. Take h as the indicator of some convex set recovers most previous
results, which all consider the constrained problem instead of the arguably more natural
regularized problem6.
• The line search step in Algorithm 1 need not be solved exactly. We can derive essentially

the same rate as long as the error decays at the rate O( 1
k ).

• The step size ηk = O( 1
k ) is optimal, among constant ones, in the following sense. We

usually prefer large step sizes since they often than not result in faster convergence; on
the other hand, Algorithm 1 needs to be able to reset any σi to 0, which requires that the
discount factor

∏∞
k=1(1−ηk) = 0. It is not hard to show that the latter condition is satisfied

iff
∑∞
k=1 ηk =∞, hence the near optimality of the step size O( 1

k ).

B Improved Rate When L is Strongly Convex

In this section, under an additional assumption, we improve the convergence rate in Theorem 1 by
considering the totally corrective algorithm in (7).

Recall that strong convexity (with modulus µ) of L implies that

L(Y ) ≥ L(X) + 〈Y −X,∇L(X)〉+
µ

2
‖L−X‖2. (23)

Note that the constant µ depends on the choice of the norm ‖ · ‖. In the proof we fix the norm to be
essentially `1, and we assume the set A consists of finitely many points.

Theorem 2 Suppose Assumption 1 holds and L is furthermore strongly convex with modulus µ. Let
{A∗i , σ∗i } be a minimzer of (5) and denote f∗ := f({A∗i , σ∗i }), s∗ :=

∑
i σ
∗
i . Then the totally

corrective algorithm converges at least linearly. More precisely

f({σ(k)
i , A

(k)
i })− f

∗ ≤
(

1−min

{
1

2
,

2µ(s∗)2

m2CL

})k
(f({0,0})− f∗),

where m is the number of non-zeros in {σ∗i }.

Our proof is essentially in the same spirit as that of [16, Theorem 2.8], see also [17, Theorem 2]. It
is a pleasant surprise that the latter proof extends without much difficulty to the regularized problem
considered here.

Proof: In the proof we will use f(Xk) to denote L(Xk) +λ
∑
i σ

(k)
i where Xk :=

∑k
i=1 σ

(k)
i A

(k)
i .

6After completion of the first draft, we became aware of the recent paper [15], which proposed an algorithm
similar as our totally corrective version in (7) for the regularized problem, but the rate proven there, O( 1

ε2
), is

worse than the one presented in our Theorem 1.
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Let us record the optimality condition in (7): ∀ τ ∈ Rk+, the following holds

k∑
i=1

(〈A(k)
i ,∇L(Xk)〉+ λ)(τi − σ(k)

i ) ≥ 0, (24)

where σ(k)
i denotes the optimal solution in (7).

Take 0 ≤ η ≤ 1 whose value will be optimized later. Let sk :=
∑k
i=1 σ

(k)
i . From Assumption 1 we

have

f((1− η)Xk + ηs∗Hk+1) = L((1− η)Xk + ηs∗Hk+1) + (1− η)λsk + ηλs∗

≤ f(Xk) + η 〈s∗Hk+1 −Xk,∇L(Xk)〉+
CL
2
η2 + ηλ(s∗ − sk).

(25)

We need to define two index sets I and J , where I contains the indexes of the elements in {A∗i } but
not in {A(k)

i } while J contains the indexes of the elements in both {A∗i } and {A(k)
i }. Note that we

can assume that I is nonempty since otherwise the current totally corrective step will find an optimal
solution.

Define r =
∑
i∈I σ

∗
i , and by the definition of Hk+1,

r 〈s∗Hk+1,∇L(Xk)〉 ≤
∑
i∈I

s∗σ∗i 〈Ai,∇L(Xk)〉

=
∑
i∈I

(s∗σ∗i − (s∗ − r)σ(k)
i ) 〈Ai,∇L(Xk)〉

≤
∑
i∈J

(s∗σ∗i − (s∗ − r)σ(k)
i ) 〈Ai,∇L(Xk)〉+ λ(s∗ − r)(s∗ − sk)

= s∗(〈X∗ −Xk,∇L(Xk)〉+ λ(s∗ − sk))− λr(s∗ − sk) + r 〈Xk,∇L(Xk)〉

≤ s∗(f∗ − f(Xk)− µ

2
‖σ∗ − σ(k)‖21)− λr(s∗ − sk) + r 〈Xk,∇L(Xk)〉 ,

(26)

where the last inequality follows from the strong convexity assumption, and the second inequality
follows from the optimality of σ(k). Indeed, if J − I = ∅, then s∗ = r, hence we in fact have an
equality. Assume otherwise, then the inequality follows from the optimality condition (24).

Now apply (26) to (25), we get

f((1− η)Xk + ηs∗Hk+1) ≤ f(Xk) + η
r 〈s∗Hk+1,∇L(Xk)〉 − r 〈Xk,∇L(Xk)〉

r
+
CL
2
η2 + ηλ(s∗ − sk)

≤ f(Xk)− η
s∗(f(Xk)− f∗ + µ

2 ‖σ
∗ − σ(k)‖21)

r
+
CL
2
η2.

Apparently f(Xk+1) ≤ minη∈[0,1] f((1− η)Xk + ηs∗Hk+1), hence

f(Xk+1)− f∗ ≤ f(Xk)− f∗ − η
s∗(f(Xk)− f∗ + µ

2 ‖σ
∗ − σ(k)‖21)

r
+
CL
2
η2.

Minimizing η on the right-hand side yields

f(Xk+1)− f∗ ≤ f(Xk)− f∗ −min

{
s∗δ

2r
,
δ2(s∗)2

2r2CL

}
,

where δ := f(Xk)− f∗ + µ
2 ‖σ

∗ − σ(k)‖21 ≥ 0. It is easy to see that

s∗δ

2r
≥ 1

2
(f(Xk)− f∗).
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On the other hand,

δ2(s∗)2

2r2CL
≥ 2µ(f(Xk)− f∗)(s∗)2‖σ∗ − σ(k)‖21

r2CL
≥

2µ(f(Xk)− f∗)(s∗)2
∑
i∈I(σ

∗
i )2

CL(
∑
i∈I σ

∗
i )2

(27)

≥ 2µ(f(Xk)− f∗)(s∗)2

CL|I|2
≥ 2µ(f(Xk)− f∗)(s∗)2

CLm2
=

2µ(s∗)2

CLm2
(f(Xk)− f∗),

where recall that m is the number of nonzeros entries in {σ∗i }.
Combining the above two estimates completes the proof:

f(Xk+1)− f∗ ≤
(

1−min

{
1

2
,

2µ(s∗)2

CLm2

})
(f(Xk)− f∗).

C Proof of Proposition 1 and 2

Recall that K is the convex hull of A.

Proposition 1 γK(X) = min
U,V :UV=X

1
2

∑
i(‖U:i‖2C + ‖Vi:‖2R) = min

U,V :UV=X

∑
i ‖U:i‖C ‖Vi:‖R.

Proof: This proof is similar in spirit to [36]. For any UV = X , we can write

X =
∑
i

‖U:i‖C ‖Vi:‖R
U:i

‖U:i‖C
Vi:
‖Vi:‖R

. (28)

So by the definition of gauge function,

γK(X) ≤
∑
i

‖U:i‖C ‖Vi:‖R ≤
1

2

∑
i

(
‖U:i‖2C + ‖Vi:‖2R

)
. (29)

To attain equality, by the the definition of the gauge γK, there exist σi, Û , and V̂ which satisfy

‖Û:i‖C = ‖V̂i:‖R = 1,
∑
i

σiÛ:iV̂i: = X, γK(X) =
∑
i

σi, σi ≥ 0. (30)

Then define U:i =
√
σiÛ:i and Vi: =

√
σiV̂i:. It is easy to verify that UV = X and

1
2 (‖U:i‖2C + ‖Vi:‖2R) =

∑
i ‖U:i‖C ‖Vi:‖R =

∑
i σi = γK(X).

Proposition 2 For any U ∈ Rm×k, V ∈ Rk×n, there exist αi ≥ 0, ‖α‖0 ≤ k and ui, vi such that

UV =
∑
i

αiuiv
′
i, ‖ui‖C ≤ 1, ‖vi‖R ≤ 1,

∑
i

αi =
1

2

∑
i

(‖U:i‖2C + ‖Vi:‖2R).

Proof: Denote ai = ‖U:i‖C and bi = ‖Vi:‖R. Then

UV =
∑
i

aibi
U:i

ai

Vi:
bi

=
∑
i

1

2
(a2
i + b2i )︸ ︷︷ ︸
:=αi

√
aibi

1
2 (a2

i + b2i )

U:i

ai︸ ︷︷ ︸
:=ui

√
aibi

1
2 (a2

i + b2i )

Vi:
bi︸ ︷︷ ︸

:=v′i

. (31)

Clearly ‖ui‖C ≤ 1, ‖vi‖R ≤ 1, and
∑
i αi = 1

2

∑
i(‖U:i‖2C + ‖Vi:‖2R).
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D Proof of the strong duality

The goal of this note is to solve the following problem:

(QP ) max
x,y
‖Ax +By + c‖ , s.t. ‖x‖ ≤ 1, ‖y‖ ≤ 1. (32)

Here c is a non-zero vector, and all the norms are Euclidean. Let x ∈ Rm, y ∈ Rn, c ∈ Rt,
A ∈ Rt×m and B ∈ Rt×n.

The problem is not convex in this form, because it is maximizing a positive semi-definite quadratic.
To find a global solution, we first reformulate it. Define

z =

(
r
x
y

)
, b =

(
A′c
B′c

)
(33)

Q = −
(
A′A A′B
B′A B′B

)
, M0 =

(
0 −b′
−b Q

)
(34)

M1 =

( −1 01×m 01×n
0m×1 Im×m 0m×n
0n×1 0n×m 0n×n

)
(35)

M2 =

( −1 01×m 01×n
0m×1 0m×m 0m×n
0n×1 0n×m In×n

)
. (36)

Then the problem (QP ) can be rewritten as

(QP ) max
z

z′M0z (37)

s.t. z′M1z ≤ 0 (38)

z′M2z ≤ 0 (39)

r2 = 1. (40)

Denote the inner product between matrices X and Y as X • Y := trX ′Y . Then we can further
rewrite (QP ) as:

(QP ) min
z

M0 • (zz′) (41)

s.t. M1 • (zz′) ≤ 0 (42)

M2 • (zz′) ≤ 0 (43)

I00 • (zz′) = 1, (44)

where I00 =

(
1 01×(m+n)

0(m+n)×1 0(m+n)×(m+n)

)
. Then a natural SDP relaxation of (QP ) is

(SP ) min
X

M0 •X (45)

s.t. M1 •X ≤ 0 (46)
M2 •X ≤ 0 (47)
I00 •X = 1, (48)

X � 0. (49)

Note (SP ) is a convex problem, but there may be a gap between the optimal values of (SP ) and
(QP ) because (SP ) dropped the rank-one constraint on X . The dual problem of (SP ) is

(SD) max
y0,y1,y2

y0 (50)

s.t. Z := M0 − y0I00 + y1M1 + y2M2 � 0 (51)
y1 ≥ 0, y2 ≥ 0. (52)

With slight abuse of notation, we denote as QP , SP , and SD the optimal objective value of the re-
spective problems. We may also write QP (A,B, c) to make explicit their dependence on (A,B, c).
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Clearly SP = SD since the Slater’s condition is always met. However, QP ≥ SP because (SP )
does not necessarily admit a rank-one optimal solution. The key conclusion of this note is to rule
out this possibility, and show that

QP (A,B, c) = SP (A,B, c) for all A,B, c, (strong duality). (53)

So there must be a rank-one optimal solution to (SP ), based on which we can easily recover an
optimal z for (QP ).

Generalization Note the b in (33) is determined by A, B and c and does not have full freedom.
In this note we will prove a stronger result by dropping this constraint and consider for general
unconstrained b. Accordingly, we will show a slightly more general relationship:

QP (A,B,b) = SP (A,B,b) for all A,B,b, (strong duality). (54)

Besides proving (54), two computational issues need to be resolved. First, given the optimal {yi}
for (SD), how to recover the optimal (x,y) for (QP ). The details are given in Section D.1.3.
Second, how to solve (SD). We propose using the cutting plane method. Note there are only
three variables in (SD), and the only tricky part is the positive semi-definite constraint (51). For
low dimensional convex optimization, it is quite easy to approximate this (nontrivial) constraint by
cutting planes, which relies on the oracle: given an assignment of {yi}, find a maximal violator of
(51), i.e. argminu:‖u‖=1 u

′Zu (≤ 0). The solution is simply the eigenvector corresponding to the
least algebraically eigenvalue.

Notation The set of all n-by-n symmetric matrices is denoted as Sn×n, and the set of all n-by-n
positive semi-definite matrices is denoted as Sn×n+ . det(A) is the determinant of a matrixA. Denote
the kernel (null space) of a linear map A as Ker(A), and the range of A as Im(A) (the span of the
column space of A).

D.1 Strong Duality

This section proves the strong duality. Our idea is similar to [37]. We first define a set of Properties
(called Property I) over the optimal solutions of (SP ) and (SD). Next we show that if Property I
does not hold, then strong duality is guaranteed. Finally we show that in our case, Property I can
never be met.

D.1.1 Property I

Let X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) be a pair of optimal solutions for (SP ) and (SD), respectively. The KKT
condition states

X̂Ẑ = 0 (55)

ŷiMi • X̂ = 0, i ∈ {1, 2} . (56)

We define a Property I in the same spirit as [37].

Definition 1 We say the optimal pair X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) has Property I if:

1. M1 • X̂ = 0 and M2 • X̂ = 0.

2. rank(Ẑ) = m+ n− 1.

3. rank(X̂) = 2, and P3: there is a rank-one decomposition of X̂ , X̂ = x1x
′
1 + x2x

′
2, such

that M1 • xix′i = 0 (i = 1, 2), and (M2 • x1x
′
1)(M2 • x2x

′
2) < 0.

The concept of rank-one decomposition is available in subsection D.2. It is simple to symmetrize
the item 3 of Property I (i.e. swap the role of M1 and M2), but this is not needed for our purposes.
Our key result is to use the Property I to characterize the case of strong duality.

Theorem 3 If (SP ) and (SD) have a pair of optimal solution X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) which do not
satisfy Property I, then strong duality holds, i.e. SP = QP and (SP ) has a rank-one optimal
solution.
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Proof: Assume Property I does not hold, and we enumerate four exhaustive (but not mutually
exclusive) possibilities.

Case 1: M1 • X̂ 6= 0 orM2 • X̂ 6= 0. Without loss of generality, supposeM2 • X̂ 6= 0. Then ŷ2 = 0
by KKT condition (56). So when solving (SD), we can equivalently clamp y2 to 0 and optimize
only in y0 and y1. This corresponds to solving (SP ) by ignoring the constraint (47). By [38], all
extreme points of the new feasible region of (SP ) has rank 1, and so (SP ) must have an optimal
solution with rank 1.

Case 2: M1 • X̂ = M2 • X̂ = 0 and rank(X̂) 6= 2. Let r = rank(X̂). Obviously r > 0 since
I00X̂ = 1. If r = 1, then (SP ) already has a rank-one solution and (QP ) is solved. So we only need
to consider the case r ≥ 3. By Proposition 6 with δ1 = δ2 = 0, there is a rank-one decomposition
of X̂ satisfying

X̂ = x1x
′
1 + x2x

′
2 + . . .+ xrx

′
r (57)

M1 • xix′i = 0, for i = 1, . . . , r (58)

M2 • xix′i = 0, for i = 1, . . . , r − 2. (59)

By Proposition 3, we have Z(x1x
′
1) = 0. Let x1 = (t1,u

′
1,v
′
1)′. Then

(58) ⇒ −s2
1 + ‖u1‖2 = 0 (60)

(59) ⇒ −s2
1 + ‖v1‖2 = 0. (61)

So if s1 = 0 then u1 = v1 = 0, which means x1 = 0. Contradiction. So s1 6= 0 and we can
easily see that X̂1 := x1x

′
1/s

2
1 satisfies the KKT conditions (55) and (56), together with I00X̂1 = 1.

Hence x1x
′
1/s

2
1 is a rank-one optimal solution to (SP ) and x1/s1 is an optimal solution to (QP ).

Case 3: M1 • X̂ = M2 • X̂ = 0, rank(X̂) = 2, but P3 does not hold. By Proposition 4, there must
be a rank-one decomposition X̂ = x1x

′
1 + x2x

′
2 such that

M1 • (x1x
′
1) = M1 • (x2x

′
2) = 0. (62)

So the failure of P3 implies

M2 • x1x
′
1 = M2 • x2x

′
2 = 0, (63)

because M2 •x1x
′
1 +M2 •x2x

′
2 = M2 • X̂ = 0. Using exactly the same argument as in Case 2, we

conclude that s1, the first element of x1, is non-zero, and x1x
′
1/s

2
1 is a rank-one optimal solution to

(SP ). Obviously, x2x
′
2/s

2
2 is also a rank-one solution to (SP ), where s2 is the first element of x2.

Case 4: M1•X̂ = M2•X̂ = 0, rank(X̂) = 2,M1•(x1x
′
1) = M1•(x2x

′
2) = 0, (M2•x1x

′
1)(M2•

x2x
′
2) < 0, and rank(Ẑ) 6= m+ n− 1. By Sylvester’s inequality,

rank(Ẑ) + rank(X̂)− (m+ n+ 1) ≤ rank(ẐX̂). (64)

Now rank(X̂) = 2 and ẐX̂ = 0, so rank(Ẑ) ≤ m + n − 1. Therefore in this particular case
rank(Ẑ) ≤ m+ n− 2. So by 0.4.5(d) of [39],

rank(X̂ + Ẑ) ≤ rank(X̂) + rank(Ẑ) (65)
≤ 2 + (m+ n− 2) = m+ n. (66)

Thus there must be a y 6= 0 such that (X̂ + Ẑ)y = 0, and

y′X̂y + y′Ẑy = y′(X̂ + Ẑ)y = 0. (67)

Since both X̂ and Ẑ are positive semi-definite, we conclude that y ∈ Ker(X̂)∩Ker(Ẑ). Now define

X := X̂ + yy′ = x1x
′
1 + x2x

′
2 + yy′. (68)

Obviously rank(X) = 3 and ẐX = 0. Since

M1 • (x1x
′
1) = M1 • (x2x

′
2) = 0 (69)

(M2 • x1x
′
1)(M2 • x2x

′
2) < 0, (70)
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so by Proposition 5 with δ1 = δ2 = 0, there must be an x such that X is rank-one decomposable at
x and

M1 • xx′ = 0, M2 • xx′ = 0. (71)

Since ẐX = 0, Proposition 3 implies Ẑx = 0 and so Ẑ • xx′ = 0. Based on the satisfaction of
the KKT conditions (55) and (56), we conclude that xx′/s2 is a rank-one optimal solution to (SP ),
where s is the first element of x. s must be non-zero because of (71) and the same argument as in
Case 2.

D.1.2 Strong Duality

Let us denote (A,B,b) collectively as Γ := (A,B,b), and define a “Frobenius” norm on Γ as
‖Γ‖2 := ‖A‖2F + ‖B‖2F + ‖b‖2. Ideally we wish to show that for any Γ, the Property I does not
hold for some solutions to (SP ) and (SD), hence strong duality holds (Theorem 3). However, this
is hard. So we resort to the argument of ε-perturbation.

Before proceeding, we first make a very simple rewriting of (QP ). Let p = max {t,m, n}. By
padding zeros if necessary, we can expand A and B into p-by-p dimensional matrices, and c into an
p dimensional vector. Let x and y be p dimensional too. Obviously, the optimal values of (QP ) and
(SP ) in this new problem are the same as those in the original problem, respectively. Therefore,
henceforth we will only consider square matrices A and B. For notational convenience, we just call
all t, m, and n as n.

Of key importance is the Danskin’s theorem.

Lemma 1 (Danskin) Suppose f : Z × Ω → R is a continuous function, where Z ⊆ Rn is a
compact set and Ω ⊆ Rm is an open set. For any z, ∇ωf(z, ω) exists and is continuous. Then the
marginal function

φ(ω) := max
z∈Z

f(z, ω) (72)

is continuous.

Note that Danskin’s theorem does not require convexity. Let the z in Lemma 1 correspond to
(x′,y′)′ in (QP ), ω to Γ, Z to {x : ‖x‖ ≤ 1} × {y : ‖y‖ ≤ 1}, and Ω to the whole Euclidean
space. Then Lemma 1 implies that QP (Γ) is continuous in Γ. Similarly, SP (Γ) is continuous.

The continuity at Γ means that for any ε > 0, there exists δ > 0, such that for all Γ̂ in the δ
neighborhood of Γ:

Bδ(Γ) :=
{

Γ̂ :
∥∥∥Γ̂− Γ

∥∥∥ < δ
}
, (73)

we have ∣∣∣QP (Γ̂)−QP (Γ)
∣∣∣ < ε, (74)∣∣∣SP (Γ̂)− SP (Γ)
∣∣∣ < ε. (75)

Our key result will be the following theorem.

Theorem 4 For any Γ and δ > 0, there exists Γδ ∈ Bδ(Γ) such that strong duality holds at Γδ:

QP (Γδ) = SP (Γδ). (76)

Using Theorem 4, we can easily prove strong duality.

Corollary 1 QP (Γ) = SP (Γ) for all Γ.

Proof: It suffices to show that for any ε > 0,

|QP (Γ)− SP (Γ)| < 2ε. (77)

17



By continuity of QP and SP , there exists a δ > 0, such that (74) and (75) hold for all Γ̂ ∈ Bδ(Γ).
By Theorem 4, there exists Γδ ∈ Bδ(Γ) such that (76) holds. Combining it with (74) and (75) (with
Γ̂ = Γδ), we obtain (77).

Finally we prove Theorem 4.

Proof: Clearly Bδ/2(A,B,b) contains invertible matrices for any A, B, and δ > 0. Arbitrarily
pick two such matrices and call them Aδ and Bδ . By Theorem 3, to establish (76) it suffices to
show that the corresponding (SP ) and (SD) problems at (Aδ, Bδ) have a pair of optimal solutions
X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) which do not satisfy Property I. We will focus on the second condition:
rank(Ẑ) = 2n− 1.

If rank(Ẑ) 6= 2n − 1, then by Theorem 3 strong duality holds at Γδ := (Aδ, Bδ,b). Otherwise
suppose rank(Ẑ) = 2n− 1. Noting (51), we have

Ẑ = M0 − ŷ0I00 + ŷ1M1 + ŷ2M2 =

(
−ŷ0 − ŷ1 − ŷ2 −b′

−b R

)
, (78)

where R =

(
ŷ1I −A′δAδ −A′δBδ
−B′δAδ ŷ2I −B′δBδ

)
. (79)

Note that for any given y1 and y2, (SD) maximizes y0 subject to Ẑ � 0. By Proposition 7, we
know that

2n− 1 = rank(Ẑ) = rank(R). (80)

Denote P = ŷ1I − A′δAδ and Q = ŷ2I − B′δBδ . Then by Proposition 8, we have rank(P ) +
rank(Q) = 2n− 1 or 2n. Now we discuss three cases.

Case 1: rank(P ) = n and rank(Q) = n−1. By Schur complement, we haveQ � B′δAδP−1A′δBδ .
So by Exercise 4.3.14 of [39],

λmin(Q) ≥ λmin(B′δAδP
−1A′δBδ), (81)

where λmin stands for the smallest eigenvalue. SinceAδ andBδ are both invertible,B′δAδP
−1A′δBδ

must be positive definite and its smallest eigenvalue is strictly positive. But rank(Q) = n − 1,
meaning the minimum eigenvalue of Q is 0. So contraction with (81).

Case 2: rank(P ) = n− 1 and rank(Q) = n. Same argument as for Case 1.

Case 3: rank(P ) = rank(Q) = n. Since rank(R) = 2n−1,Rmust have an eigen-vector u0 whose
corresponding eigen-value is 0. In fact u0 is unique up to negation. By Proposition 7, b ∈ Im(R),
so b′u0 = 0. Now perturb the b in Z in the direction of u0:

Ẑ(t) =

(
−ŷ0(t)− ŷ1(t)− ŷ2(t) −b′ − tu′0

−b− tu0 R(t)

)
, t ∈ R, (82)

where ŷi(t) are the optimal solutions for SD(Aδ, Bδ,b+ tu0) and R(t) uses ŷi(t). Denote P (t) =

ŷ1(t)I−A′δAδ and Q(t) = ŷ2(t)I−B′δBδ . If there exists t ∈ (−δ/2, δ/2) such that rank(Ẑ(t)) 6=
2n−1, then (Aδ, Bδ,b+tu0) is the Γδ in Theorem 4. Otherwise, rank(Ẑ(t)) = 2n−1 for all |t| <
δ/2 and by the same argument as in Case 1 and 2, we conclude that rank(P (t)) = rank(Q(t)) = n,
∀ t. Since rank(R(t)) = rank(Ẑ(t)) = 2n − 1, R(t) must have an eigen-vector u(t) whose
corresponding eigen-value is 0. Clearly u(t) is unique up to the sign, and we can set u(0) = u0. By
Proposition 7, b + tu0 must be in the range of R(t). If we can show that u(t) = (1 + ct)u0 + o(t)
where limt→0 o(t)/t = 0 and c ∈ R is independent of t, then

0 = (b + tu0)′u(t) = (b + tu0)′((1 + ct)u0 + o(t)) = t+ ct2 + b′o(t) + tu′0o(t). (83)

Dividing both sides by t and driving t to 0, we get 0 = 1 + 0 + 0 + 0. Contradiction.

To show u(t) = (1 + ct)u0 + o(t), we need to analyze the gradient of u(t) at t = 0. First we
show ŷi(t) is differentiable in t at t = 0 for i = 1, 2. Since rank(P (t)) = rank(Q(t)) = n and
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rank(R(t)) = 2n − 1, we have 0 = det(R(t)) = det(P (t)) · det(Q(t) − B′δAδP (t)−1A′δBδ). In
conjunction with Schur complement, we get

ŷ2(t) = λmax

(
B′δBδ +B′δAδ(ŷ1(t)I −A′δAδ)−1A′δBδ

)
, (84)

ŷ1(t) = λmax

(
A′δAδ +A′δBδ(ŷ2(t)I −B′δBδ)−1B′δAδ

)
. (85)

So a larger ŷ1(t) implies a smaller ŷ2(t) and a smaller ŷ1(t) implies a larger ŷ2(t). By Proposition
7,

(ŷ1(t), ŷ2(t)) = argmin
y1,y2

y1 + y2 + (b + tu0)′
(
y1I −A′δAδ −A′δBδ
−B′δAδ y2I −B′δBδ

)†
(b + tu0). (86)

In general, pseudo-inverse is not even continuous. However, since we know that rank(R(t)) =
2n − 1 (constant rank), so the pseudo-inverse is differentiable in R(t) [40]. So ŷ1(t) and ŷ2(t) are
differentiable in t at t = 0.

By Theorem 1 of [41], we know there exists a choice of the sign for u(t) which satisfies

∂u(t)

∂t

∣∣∣∣
t=0

= u0

∑
ij

Aij
∂Rij(t)

∂t

∣∣∣∣
t=0

, where A = −R(0)† (87)

= u0

(
ŷ′1(0)

n∑
i=1

Aii + ŷ′2(0)

2n∑
i=n+1

Aii

)
. (88)

Setting c := ŷ′1(0)
∑n
i=1Aii + ŷ′2(0)

∑2n
i=n+1Aii yields u(t) = (1 + ct)u0 + o(t).

D.1.3 Recovering the optimal solution

With the guarantee of strong duality, an algorithm is needed to recover a rank-one optimal solution
to (SP ) when given an optimal dual solution Ẑ to (SD). By the KKT condition, all we need is two
vectors x and y satisfying:

z′Ẑz = 0, ‖x‖ ≤ 1, ‖y‖ ≤ 1, (89)

where z = (1,x′,y′)′. Note this is a necessary and sufficient condition for optimal x and y.
Since Ẑ is positive semi-definite, z must be in the null space of Ẑ. Suppose Ker(Ẑ) is spanned
by (g1, . . . ,gk). Let

G = (g1, . . . ,gk) =

(
G0

GX
GY

)
. (90)

Then it suffices to find α ∈ Rk such that |G0α| = 1, ‖GXα‖ = 1, and ‖GY ‖α = 1. To this end,
we only need to find α satisfying

α′(G′XGX −G′0G0)α = 0 (91)

α′(G′YGY −G′0G0)α = 0 (92)
G0α 6= 0, (93)

and then scale it properly. In the sequel, we will first find α which satisfies the first two conditions
and then show how to satisfy the last one. Denote S̃ = G′XGX −G′0G0 and T̃ = G′YGY −G′0G0.
Let their algebraically smallest eigenvalues be sX and sY , and define s = 1 −min(sX , sY ). Then
S := S̃ + sI and T := T̃ + sI must be positive definite, and α only needs to satisfy

α′Sα = sα′α (94)

α′Tα = sα′α (95)
G0α 6= 0. (96)
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Denote α̂ = α/ ‖α‖, then it is equivalent to

α̂′Sα̂ = s (97)

α̂′T α̂ = s (98)
G0α̂ 6= 0. (99)

Because both S and T are positive semidefinite, by [39, Corollary 4.6.12] there exists a nonsin-
gular matrix R such that RSR′ = I and RTR′ is real diagonal. In fact this R can be con-
structed analytically. Let S have eigen-decomposition S = UDU ′ where D is diagonal. Denote
H = U

√
DU ′ and let HTH have eigen-decomposition HTH = V ΛV ′. Then R can be simply

chose as R = V ′H−1 = V UD−1/2U ′. Let RTR′ be diag {σi}. Denote β = Rα̂, then β only
needs to satisfy

β′β = s (100)

β′Σβ = s (101)

G0R
−1β 6= 0. (102)

It is easy to find a β which satisfies the first two constraints, because it is guaranteed that there exists
a β which satisfies all the three conditions. Once we get such a β, suppose G0R

−1β = 0. Then
we can flip the sign of one of its nonzero components. If its product with G0R

−1 is still 0, then it
means the corresponding entry in G0R

−1 is 0. But G0R
−1 cannot be straight 0 because that would

imply G0 is a zero vector which violates the assumption that G is the basis of Ker(Ẑ). Therefore
we can always find a β which satisfies (100) to (102).

D.2 Preliminaries in Matrix Analysis

D.2.1 Matrix Rank-one decomposition

Let X be a n-by-n positive semi-definite matrix with rank(X) = r. Then a set of r vectors
{x1, . . . ,xr} in Rn is called a rank-one decomposition of X if X =

∑r
i=1 xix

′
i.

It is noteworthy that the xi’s are not necessarily orthogonal to each other (x′ixj = 0 for i 6= j), but
they must be linearly independent. This leads to the following useful result.

Proposition 3 Suppose ZX = 0 and {x1, . . . ,xr} is a rank-one decomposition of X . Then Zxi =
0, ∀ i.

Proof: Denote yi := Zxi. Suppose otherwise y1 6= 0. Since ZX = 0, we have

0 = X ′Z ′y1 =

r∑
i=1

xix
′
iZ
′y1 =

r∑
i=1

(y′iy1)xi. (103)

Since y1 6= 0, this violates the linear independence of x1, . . . ,xr.

X is called rank-one decomposable at a vector x1 if there exist other r − 1 vectors x2, . . . ,xr such
that X =

∑r
i=1 xix

′
i.

The following three theorems play an important role in our proof.

Proposition 4 (Corollary 4 of [42]) Suppose X ∈ Sn×n+ with rank(X) = r. Z ∈ Sn×n and
Z • X ≥ 0. Then there must be a rank-one decomposition of X = x1x

′
1 + . . . + xrx

′
r such that

Z • (xix
′
i) = Z •X/r for all i = 1, . . . , r.

Proposition 5 (Lemma 3.3 of [37]) Suppose X ∈ Sn×n+ with rank r ≥ 3. A1, A2 ∈ Sn×n. Let
{x1, . . . ,xr} be a rank-one decomposition of X . If

A1 • x1x
′
1 = A1 • x2x

′
2 = δ1 (104)

(A2 • x1x
′
1 − δ2)(A2 • x2x

′
2 − δ2) < 0, (105)

then there is a vector y ∈ Rn such that X is rank-one decomposable at y and

A1 • yy′ = δ1, A2 • yy′ = δ2. (106)
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Proposition 6 (Theorem 3.4 of [37]) Suppose X ∈ Sn×n+ with rank r ≥ 3. A1, A2 ∈ Sn×n. If

A1 •X = δ1, A2 •X = δ2, (107)

then X has a rank-one decomposition {x1, . . . ,xr} such that

A1 • xix′i = δ1/r for i = 1, . . . , r, (108)

A2 • xix′i = δ2/r for i = 1, . . . , r − 2. (109)

D.2.2 Bounding the rank of block matrices

Proposition 7 Let X ∈ Sn×n+ and b ∈ im(X). Define

Y (c) =

(
c b′

b X

)
, c ∈ R. (110)

Suppose Y (c) � 0 and rank(X) = r. Then

rank(Y (c)) ∈ {r, r + 1}. (111)

Furthermore, if c∗ is the minimum value such that Y (c) � 0:

c∗ = arginf
c:Y (c)�0

c, (112)

then we have rank(Y (c∗)) = r.

Finally, if b /∈ im(X), then Y (c) � 0 cannot hold for any c ∈ R.

Proof: Since adding rows and columns to a matrix will not decrease its rank, so obviously
rank(Y (c)) ≥ rank(X) = r. To show rank(Y (c)) ≤ r + 1, let the eigenvalues of X and Y (c) be
λ1, . . . , λn and λ̂1, . . . , λ̂n+1, both in increasing order. Then by Theorem 4.3.8 of [39], we have

λ̂1 ≤ λ1 ≤ λ̂2 ≤ λ2 ≤ . . . λ̂n ≤ λn ≤ λ̂n+1. (113)

Since rank(X) = r and X ∈ Sn×n+ , so λ1 = . . . = λn−r = 0. As Y (c) � 0, we have

0 ≤ λ̂1 ≤ . . . ≤ λ̂n−r ≤ 0. (114)

Therefore rank(Y (c)) ≤ (n+ 1)− (n− r) = r + 1.

As for the second part, we can actually compute c∗ explicitly. Y (c) � 0 if and only if
(α,u′)Y (c)(α,u′)′ ≥ 0 for all α ∈ R and u ∈ Rn, i.e.

cα2 + 2αb′u + u′Xu ≥ 0, ∀ α ∈ R,u ∈ Rn. (115)

If α = 0, this must hold true since X � 0. Otherwise,

c∗ = max
α6=0,u

−u′Xu− 2αb′u

α2
(116)

= max
z
−z′Xz− 2b′z (117)

=

{
b′X†b if b ∈ im(X)

∞ if b /∈ im(X)
, (118)

where X† is the pseudo-inverse of X . To prove rank(Y (c∗)) = r, it suffices to show that
Ker(Y (c∗)) = n− r + 1. Towards this end first note

Y (c∗)

(
−1
X†b

)
=

(
b′X†b b′

b X

)(
−1
X†b

)
(119)

=

(
0

−b +XX†b

)
= 0. (120)

where the last step also used b ∈ im(X). Hence
(
−1
X†b

)
∈ Ker(Y (c∗)).
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Furthermore, rank(X) = r implies there are n − r linearly independent vectors u1, . . . ,un−r ∈
Ker(X). As b ∈ im(X), so b′ui = 0 for all i. Therefore

Y (c∗)

(
0
ui

)
=

(
c∗ b′

b X

)(
0
ui

)
=

(
b′ui
Xui

)
= 0. (121)

Clearly
(
−1
X†b

)
,

(
0
u1

)
, . . . ,

(
0

un−r

)
are linearly independent, so Ker(Y (c∗)) ≥ n−r+1,

i.e. rank(Y (c∗)) ≤ r.

Finally, it is obvious from (118) that no c ∈ R makes Y (c) � 0 if b /∈ im(X).

Proposition 8 Let P , Q, R be n-by-n matrices, and

Z =

(
P R
R′ Q

)
. (122)

Suppose Z � 0 and rank(Z) = 2n − 1. Denote r = rank(P ) and s = rank(Q). Then r + s ∈
{2n− 1, 2n}.

Proof: Let Ker(P ) be spanned by u1, . . . ,un−r, and Ker(Q) be spanned by v1, . . . ,vn−s. Denote

ûi =

(
ui
0

)
and v̂i =

(
0
vi

)
. Then

û′iZûi = u′iPu
′
i = 0. (123)

Since Z � 0, so ûi ∈ Ker(Z). Similarly v̂i ∈ Ker(Z). Clearly û1, . . . , ûn−r, v̂1, . . . , v̂n−s are
linearly independent, therefore

2n− 1 = rank(Z) ≤ 2n− (n− r)− (n− s) = r + s. (124)

So r + s ∈ {2n− 1, 2n}.
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