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Abstract

This article provides proofs of the two theorems presented in section 2 of the
paper.

1 Preliminary Introduction

For the sake of being self-contained, we restate the proposed construction here:
Hs ∼ DP(αs, B), (1)

(ct1, . . . , ctML
) ∼ Dir(α1qt1, . . . , αML

qtML
), (2)

Dt =

ML∑
s=1

ct,sSqts(Hs). (3)

Here, Sq denotes the sub-sampling operation with probability q to retain each atom.

2 Proof of Theorem 1

Theorem 1. The stochastic process Dt constructed as above is a Dirichlet process, and has

Dt ∼ DP(βt, B) with βt =

ML∑
s=1

αsqts. (4)

Proof. According to the sub-sampling theorem in [1], we have
Sqts(Hs) ∼ DP(qtsαs, B). (5)

Since H1, . . . ,HML
are independent, The sub-sampled DPs Sqst(Hs) are independent for different

s. Then Eq.(4) immediately follows, according to the superposition theorem in [1].

3 Proof of Theorem 2

Before proving the theorem, we first derive some useful lemmas.
Lemma 1. Let A, B, and (X,Y ) be independent (X and Y can be correlated), then we have

Cov(AX,BY ) = E(A)E(B)Cov(X,Y ). (6)

Proof. The can be shown as below.
Cov(AX,BY ) = E(ABXY )− E(AX)E(BY )

= E(A)E(B)E(XY )− E(A)E(B)E(X)E(Y )

= E(A)E(B)(E(XY )− E(X)E(Y ))

= E(A)E(B)Cov(X,Y ). (7)
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Lemma 2. Let H ∼ DP(α,B) and q1, q2 > 0. Suppose S1 = Sq1(H) and S2 = Sq2(H) are
independently generated from H , and U is a measurable subset of Ω, then

Cov(S1(U), S2(U)) =
q1q2

αq1q2 + 1
VU . (8)

Here, VU = B(U)(1−B(U)).

Proof. To prove this lemma, we have to consider the construction in a different but equivalent way.
Instead of considering S1 and S2 separately, we consider a joint process that generates both. Specif-
ically, we express H as

H =

∞∑
i=1

πiδθi .

For each i, we independently draw two Bernoulli variables zi,1 and zi,2, respectively with P (zi,1 =
1) = q1 and P (zi,2 = 1) = q2. Based on these variables, we divide atoms into four subsets
s00, s01, s10 and s11. Particularly, suv contains all the atoms with z1 = u and z2 = v. (Here, u and
v are binary values).

With the atoms in these subsets, we can respectively derive four DPs by renormalizing the atom
weights, D00, D01, D10 and D11. According to the sub-sampling theorem [1], we have

D00 ∼ DP(α(1− q1)(1− q2), B), (9)
D01 ∼ DP(α(1− q1)q2, B), (10)
D10 ∼ DP(αq1(1− q2), B), (11)
D11 ∼ DP(αq1q2, B). (12)

Since there are no atoms shared between them, D00, D01, D10, D11 are independent.

As S1 comprises all the atoms with z1 = 0, it can be viewed as being generated by superimposing
D11 and D10. Likewise, S2 can be generated by superimposing D11 and D01. Hence, we can write
S1 and S2 as follows

S1 = c1D11 + (1− c1)D10, c1 ∼ Beta(αq1q2, αq1(1− q2) (13)
S2 = c2D11 + (1− c2)D01, c2 ∼ Beta(αq1q2, α(1− q1)q2). (14)

Here, c1 and c2 are independent. Then the covariance between S1(U) and S2(U) can be written as
Cov(S1(U), S2(U)) = Cov(c1D11(U) + (1− c1)D10(U), c2D11(U) + (1− c2)D01(U)), (15)

= Cov(c1D11(U), c2D11(U)). (16)
Here, we utilize the fact that 1− c1, 1− c2, D10(U) and D01(U) are all independent. By Lemma 1,
we have

Cov(S1(U), S2(U)) = E(c1)E(c2)Var(D11(U)) =
q1q2

αq1q2 + 1
B(U)(1−B(U)) =

q1q2
αq1q2 + 1

VU .

(17)
Eq.(8) has been established.

Theorem 2. Let t1, t2 be different indices, U be a measurable subset of Ω, then

Cov(Dt1(U), Dt2(U)) =
1

βt1βt2

ML∑
s=1

(αsqt1sqt2s)
2

αsqt1sqt2s + 1
VU . (18)

Here, VU , B(U)(1−B(U)).

Proof. Following Eq.(3), we have

Cov(Dt1(U), Dt2(U)) = Cov

(
ML∑
s=1

ct1sSqt1s(Hs)(U),

ML∑
s′=1

ct2s′Sqt2s′ (Hs′)(U)

)

=

ML∑
s=1

Cov
(
ct1sSqt1s

(Hs)(U), ct2sSqt2s
(Hs)(U)

)
(19)
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Here, we utilize the fact that ct1s, ct2s′ are independent when t1 6= t2, and Hs and Hs′ are indepen-
dent when s 6= s′, and thus Cov(ct1sSqt1s

(Hs), ct2s′Sqt2s′ (Hs′)) = 0, whenever s 6= s′.

According to both Lemma 1 and Lemma 2, this can be further written as

Cov(Dt1(U), Dt2(U)) =

ML∑
s=1

E(ct1s)E(ct2s)Cov(Sqt1s
(Hs)(U), Sqst2 (Hs)(U)) (20)

=

ML∑
s=1

αsqt1s
βt1

· αsqt2s
βt2

· qt1sqt2s
αqt1sqt2s + 1

VU , (21)

=
1

βt1βt2

ML∑
s=1

(αsqt1sqt2s)
2

αqt1sqt2s + 1
VU . (22)

The proof is completed.

4 Derivation of Some Formulas for Sampling

This section provides detailed derivation of several key formulas used in the sampling algorithm.

4.1 The conditional likelihood of xti

In Eq.(10) of the main paper, we get the likelihood of xti conditioned on the choice of latent DP and
other labels. The formula is given below.

p(xti|uti = s, rt, z/ti) =
1

wst/i + qtsαs

( ∑
k∈Is:rtk=1

m∗k/tif(xti;φk) + qtsαsf(xti;B)

)
. (23)

Here, wst/i ,
∑
k∈Is m∗k/ti, which equals the total number of observed samples associated with

the atoms from Hs (except xti itself).

Proof. Note here that zti is marginalized out in the formula above, which can actually be expanded
into

p(xti|uti = s, rt, z/ti) = p(xti|zti = 0)p(zti = 0|rz, zt/i)+
∑
z∈Is

p(xti|zti = z)p(zti = z|rz, zt/i).

(24)
Here, we sum over all possible cases of choosing zti: (1) zti = 0, which indicates to create a new
atom; and (2) zti ∈ Is, which indicates to use an existing atom in Hs. When p(xti|zti = 0), xti has
to be generated from a new atom that has not been created. By marginalizing this unknown atom
parameter, we get

p(xti|zti = 0) =

∫
θ∈B

f(x; θ)B(θ)dθ , f(x;B).

When zti = z ∈ Is, we simply have p(xti|zti = z) = f(xti; θz).

For the other factor, namely the conditional probability of zti, we integrate out Hs (similar to the
argument used in deriving the Chinese restaurant process) and derive

p(zti = z|rz, zt/i) =

{
qtsαs/(wst/i + qtsαs) (z = 0)

m∗k/ti/(wst/i + qtsαs) (z ∈ Is).
(25)

Note that latent DP Hs has been sub-sampled when it is used to generate the observations in the
t-group. Hence, we have a reduced concentration qtsαs, and only the atoms with rtk = 1 is taken
into consideration here. Incorporating these results into Eq.(24) completes the derivation.
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4.2 The ratio of probabilities for the inheritance indicators

In Eq.(12) of the main paper, we derive the ratio of the posterior probabilities of rtk, the variable
indicating whether the atom φk is inherited by Dt. Suppose φk comes from Hs, the formula is

Pr(rtk = 1|others)

Pr(rtk = 0|others)
=

qts · p(zt|rtk = 1, others)

(1− qts) · p(zt|rtk = 0, others)
=

qts
1− qts

γ(τs/t, nt)

γ(τs/t +m∗k, nt)
. (26)

Here, τs/t = qtsαs +
∑
k′∈Is−{k}m∗k/t and m∗k/t is the number of samples associated with k

in all other groups (excluding the ones in the t-th group). γ is a function defined by γ(τ, n) =∏n−1
i=0 (τ + i) = Γ(τ + n)/Γ(τ).

Proof. Note that in deriving this formula, we treat everything else as fixed (including the inheritance
indicators for other atoms). Let rewrite the posterior probability Pr(rtk = v|others) using the Bayes
rule, as

Pr(rtk = v|others) ∝ p(zt|rtk = v, rt/k)p(rtk = v|qts). (27)

Here, rt/k refers to all other inheritance indicators. The factor p(rtk = v|qts) is just the prior
inheritance probability defined by qts as

p(rtk = v|qts) =

{
qts (v = 1),

1− qts (v = 0)
. (28)

The other factor is a little bit more involved. When rtk = 0, which means that φk is not contained
in Dt, we can derive the joint probability of zt recursively following a Chinese restaurant process,
which is given by

p(zt|rtk = 0, rt/k) =

∏
k′∈Is−{k}

∏otk
i=0(m∗k′/t + (i− 1))∏nt

i=1

(
qtsαs +

∑
k′∈Is−{k}m∗/k′ + (i− 1)

)
=

∏
k′∈Is−{k}

∏otk
i=0(m∗k′/t + (i− 1))∏nt−1

i=0 (τs/t + i)
. (29)

Here, otk = #{zti = k} is the number of samples in the t-th group that is associated with φk.
Likewise, when rtk = 1, we have

p(zt|rtk = 1, rt/k) =

∏
k′∈Is−{k}

∏otk
i=0(m∗k′/t + (i− 1))∏nt−1

i=0 (τs/t +m∗k/t + i)
(30)

Comparing Eq.(29) and (30), we can see that they have the same numerator, but have different
denominator. Hence, we have

p(zt = 1|rtk = 1)

p(zt = 0|rtk = 0)
=

∏nt−1
i=0 (τs/t + i)∏nt−1

i=0 (τs/t +m∗k/t + i)
,

γ(τs/t, nt)

γ(τs/t +m∗k/t, nt)
. (31)

Combining Eq.(28) and (31) with Eq.(27) results in Eq.(26), thus completing the derivation.

4.3 Other formulas

The Equation (13) in the main paper just follows the standard conjugate update for Dirichlet dis-
tribution. The Equation (14) can also be easily derived, considering that the inheritance indicators
are independently generated. (Also, in this framework, we assume all latent DPs use the same base
distribution B).
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