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Abstract

We consider the problem of identifying patterns in a data set that exhibit anoma-
lous behavior, often referred to as anomaly detection. In most anomaly detection
algorithms, the dissimilarity between data samples is calculated by a single crite-
rion, such as Euclidean distance. However, in many cases there may not exist a
single dissimilarity measure that captures all possible anomalous patterns. In such
a case, multiple criteria can be defined, and one can test for anomalies by scalar-
izing the multiple criteria using a linear combination of them. If the importance
of the different criteria are not known in advance, the algorithm may need to be
executed multiple times with different choices of weights in the linear combina-
tion. In this paper, we introduce a novel non-parametric multi-criteria anomaly
detection method using Pareto depth analysis (PDA). PDA uses the concept of
Pareto optimality to detect anomalies under multiple criteria without having to
run an algorithm multiple times with different choices of weights. The proposed
PDA approach scales linearly in the number of criteria and is provably better than
linear combinations of the criteria.

1 Introduction

Anomaly detection is an important problem that has been studied in a variety of areas and used in di-
verse applications including intrusion detection, fraud detection, and image processing [1, 2]. Many
methods for anomaly detection have been developed using both parametric and non-parametric ap-
proaches. Non-parametric approaches typically involve the calculation of dissimilarities between
data samples. For complex high-dimensional data, multiple dissimilarity measures corresponding
to different criteria may be required to detect certain types of anomalies. For example, consider the
problem of detecting anomalous object trajectories in video sequences. Multiple criteria, such as
dissimilarity in object speeds or trajectory shapes, can be used to detect a greater range of anomalies
than any single criterion. In order to perform anomaly detection using these multiple criteria, one
could first combine the dissimilarities using a linear combination. However, in many applications,
the importance of the criteria are not known in advance. It is difficult to determine how much weight
to assign to each dissimilarity measure, so one may have to choose multiple weights using, for ex-
ample, a grid search. Furthermore, when the weights are changed, the anomaly detection algorithm
needs to be re-executed using the new weights.

In this paper we propose a novel non-parametric multi-criteria anomaly detection approach using
Pareto depth analysis (PDA). PDA uses the concept of Pareto optimality to detect anomalies without
having to choose weights for different criteria. Pareto optimality is the typical method for defining
optimality when there may be multiple conflicting criteria for comparing items. An item is said to
be Pareto-optimal if there does not exist another item that is better or equal in all of the criteria. An
item that is Pareto-optimal is optimal in the usual sense under some combination, not necessarily
linear, of the criteria. Hence, PDA is able to detect anomalies under multiple combinations of the
criteria without explicitly forming these combinations.
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Figure 1: Left: Illustrative example with 40 training samples (blue x’s) and 2 test samples (red circle
and triangle) in R2. Center: Dyads for the training samples (black dots) along with first 20 Pareto
fronts (green lines) under two criteria: |∆x| and |∆y|. The Pareto fronts induce a partial ordering on
the set of dyads. Dyads associated with the test sample marked by the red circle concentrate around
shallow fronts (near the lower left of the figure). Right: Dyads associated with the test sample
marked by the red triangle concentrate around deep fronts.

The PDA approach involves creating dyads corresponding to dissimilarities between pairs of data
samples under all of the dissimilarity measures. Sets of Pareto-optimal dyads, called Pareto fronts,
are then computed. The first Pareto front (depth one) is the set of non-dominated dyads. The second
Pareto front (depth two) is obtained by removing these non-dominated dyads, i.e. peeling off the
first front, and recomputing the first Pareto front of those remaining. This process continues until
no dyads remain. In this way, each dyad is assigned to a Pareto front at some depth (see Fig. 1 for
illustration). Nominal and anomalous samples are located near different Pareto front depths; thus
computing the front depths of the dyads corresponding to a test sample can discriminate between
nominal and anomalous samples. The proposed PDA approach scales linearly in the number of cri-
teria, which is a significant improvement compared to selecting multiple weights via a grid search,
which scales exponentially in the number of criteria. Under assumptions that the multi-criteria dyads
can be modeled as a realizations from a smooth K-dimensional density we provide a mathematical
analysis of the behavior of the first Pareto front. This analysis shows in a precise sense that PDA
can outperform a test that uses a linear combination of the criteria. Furthermore, this theoretical pre-
diction is experimentally validated by comparing PDA to several state-of-the-art anomaly detection
algorithms in two experiments involving both synthetic and real data sets.

The rest of this paper is organized as follows. We discuss related work in Section 2. In Section 3 we
provide an introduction to Pareto fronts and present a theoretical analysis of the properties of the first
Pareto front. Section 4 relates Pareto fronts to the multi-criteria anomaly detection problem, which
leads to the PDA anomaly detection algorithm. Finally we present two experiments in Section 5 to
evaluate the performance of PDA.

2 Related work

Several machine learning methods utilizing Pareto optimality have previously been proposed; an
overview can be found in [3]. These methods typically formulate machine learning problems as
multi-objective optimization problems where finding even the first Pareto front is quite difficult.
These methods differ from our use of Pareto optimality because we consider multiple Pareto fronts
created from a finite set of items, so we do not need to employ sophisticated methods in order to find
these fronts.

Hero and Fleury [4] introduced a method for gene ranking using Pareto fronts that is related to our
approach. The method ranks genes, in order of interest to a biologist, by creating Pareto fronts of
the data samples, i.e. the genes. In this paper, we consider Pareto fronts of dyads, which correspond
to dissimilarities between pairs of data samples rather than the samples themselves, and use the
distribution of dyads in Pareto fronts to perform multi-criteria anomaly detection rather than ranking.

Another related area is multi-view learning [5, 6], which involves learning from data represented by
multiple sets of features, commonly referred to as “views”. In such case, training in one view helps to
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improve learning in another view. The problem of view disagreement, where samples take different
classes in different views, has recently been investigated [7]. The views are similar to criteria in
our problem setting. However, in our setting, different criteria may be orthogonal and could even
give contradictory information; hence there may be severe view disagreement. Thus training in one
view could actually worsen performance in another view, so the problem we consider differs from
multi-view learning. A similar area is that of multiple kernel learning [8], which is typically applied
to supervised learning problems, unlike the unsupervised anomaly detection setting we consider.

Finally, many other anomaly detection methods have previously been proposed. Hodge and Austin
[1] and Chandola et al. [2] both provide extensive surveys of different anomaly detection methods
and applications. Nearest neighbor-based methods are closely related to the proposed PDA ap-
proach. Byers and Raftery [9] proposed to use the distance between a sample and its kth-nearest
neighbor as the anomaly score for the sample; similarly, Angiulli and Pizzuti [10] and Eskin et al.
[11] proposed to the use the sum of the distances between a sample and its k nearest neighbors.
Breunig et al. [12] used an anomaly score based on the local density of the k nearest neighbors
of a sample. Hero [13] and Sricharan and Hero [14] introduced non-parametric adaptive anomaly
detection methods using geometric entropy minimization, based on random k-point minimal span-
ning trees and bipartite k-nearest neighbor (k-NN) graphs, respectively. Zhao and Saligrama [15]
proposed an anomaly detection algorithm k-LPE using local p-value estimation (LPE) based on a
k-NN graph. These k-NN anomaly detection schemes only depend on the data through the pairs of
data points (dyads) that define the edges in the k-NN graphs.

All of the aforementioned methods are designed for single-criteria anomaly detection. In the multi-
criteria setting, the single-criteria algorithms must be executed multiple times with different weights,
unlike the PDA anomaly detection algorithm that we propose in Section 4.

3 Pareto depth analysis

The PDA method proposed in this paper utilizes the notion of Pareto optimality, which has been
studied in many application areas in economics, computer science, and the social sciences among
others [16]. We introduce Pareto optimality and define the notion of a Pareto front.

Consider the following problem: given n items, denoted by the set S, and K criteria for evaluating
each item, denoted by functions f1, . . . , fK , select x ∈ S that minimizes [f1(x), . . . , fK(x)]. In
most settings, it is not possible to identify a single item x that simultaneously minimizes fi(x)
for all i ∈ {1, . . . ,K}. A minimizer can be found by combining the K criteria using a linear
combination of the fi’s and finding the minimum of the combination. Different choices of (non-
negative) weights in the linear combination could result in different minimizers; a set of items that
are minimizers under some linear combination can then be created by using a grid search over the
weights, for example.

A more powerful approach involves finding the set of Pareto-optimal items. An item x is said to
strictly dominate another item x∗ if x is no greater than x∗ in each criterion and x is less than
x∗ in at least one criterion. This relation can be written as x � x∗ if fi(x) ≤ fi(x

∗) for each i
and fi(x) < fi(x

∗) for some i. The set of Pareto-optimal items, called the Pareto front, is the set
of items in S that are not strictly dominated by another item in S. It contains all of the minimizers
that are found using linear combinations, but also includes other items that cannot be found by linear
combinations. Denote the Pareto front by F1, which we call the first Pareto front. The second Pareto
front can be constructed by finding items that are not strictly dominated by any of the remaining
items, which are members of the set S \ F1. More generally, define the ith Pareto front by

Fi = Pareto front of the set S \

i−1⋃
j=1

Fj

 .

For convenience, we say that a Pareto front Fi is deeper than Fj if i > j.

3.1 Mathematical properties of Pareto fronts

The distribution of the number of points on the first Pareto front was first studied by Barndorff-
Nielsen and Sobel in their seminal work [17]. The problem has garnered much attention since; for a
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survey of recent results see [18]. We will be concerned here with properties of the first Pareto front
that are relevant to the PDA anomaly detection algorithm and thus have not yet been considered in
the literature. Let Y1, . . . , Yn be independent and identically distributed (i.i.d.) on Rd with density
function f : Rd → R. For a measurable set A ⊂ Rd, we denote by FA the points on the first Pareto
front of Y1, . . . , Yn that belong to A. For simplicity, we will denote F1 by F and use |F| for the
cardinality of F . In the general Pareto framework, the points Y1, . . . , Yn are the images in Rd of n
feasible solutions to some optimization problem under a vector of objective functions of length d.
In the context of this paper, each point Yl corresponds to a dyad Dij , which we define in Section 4,
and d = K is the number of criteria. A common approach in multi-objective optimization is linear
scalarization [16], which constructs a new single criterion as a convex combination of the d criteria.
It is well-known, and easy to see, that linear scalarization will only identify Pareto points on the
boundary of the convex hull of

⋃
x∈F (x + Rd+), where Rd+ = {x ∈ Rd |xi ≥ 0, i = 1 . . . , d}.

Although this is a common motivation for Pareto methods, there are, to the best of our knowledge,
no results in the literature regarding how many points on the Pareto front are missed by scalarization.
We present such a result here. We define

L =
⋃
α∈Rd

+

argmin
x∈Sn

{
d∑
i=1

αixi

}
, Sn = {Y1, . . . , Yn}.

The subset L ⊂ F contains all Pareto-optimal points that can be obtained by some selection of
weights for linear scalarization. We aim to study how largeL can get, compared toF , in expectation.
In the context of this paper, if some Pareto-optimal points are not identified, then the anomaly
score (defined in section 4.2) will be artificially inflated, making it more likely that a non-anomalous
sample will be rejected. Hence the size of F \ L is a measure of how much the anomaly score is
inflated and the degree to which Pareto methods will outperform linear scalarization.

Pareto points in F \ L are a result of non-convexities in the Pareto front. We study two kinds of
non-convexities: those induced by the geometry of the domain of Y1, . . . , Yn, and those induced by
randomness. We first consider the geometry of the domain. Let Ω ⊂ Rd be bounded and open with
a smooth boundary ∂Ω and suppose the density f vanishes outside of Ω. For a point z ∈ ∂Ω we
denote by ν(z) = (ν1(z), . . . , νd(z)) the unit inward normal to ∂Ω. For T ⊂ ∂Ω, define Th ⊂ Ω by
Th = {z + tν | z ∈ T, 0 < t ≤ h}. Given h > 0 it is not hard to see that all Pareto-optimal points
will almost surely lie in ∂Ωh for large enough n, provided the density f is strictly positive on ∂Ωh.
Hence it is enough to study the asymptotics for E|FTh

| for T ⊂ ∂Ω and h > 0.

Theorem 1. Let f ∈ C1(Ω) with infΩ f > 0. Let T ⊂ ∂Ω be open and connected such that

inf
z∈T

min(ν1(z), . . . , νd(z)) ≥ δ > 0, and {y ∈ Ω : y � x} = {x}, for x ∈ T.

Then for h > 0 sufficiently small, we have

E|FTh
| = γn

d−1
d + δ−d−1O

(
n

d−2
d

)
as n→∞,

where γ = d−1(d!)
1
d Γ(d−1)

∫
T

f(z)
d−1
d (ν1(z) · · · νd(z))

1
d dz.

The proof of Theorem 1 is postponed to Section 1 of the supplementary material. Theorem 1 shows
asymptotically how many Pareto points are contributed on average by the segment T ⊂ ∂Ω. The
number of points contributed depends only on the geometry of ∂Ω through the direction of its normal
vector ν and is otherwise independent of the convexity of ∂Ω. Hence, by using Pareto methods, we
will identify significantly more Pareto-optimal points than linear scalarization when the geometry
of ∂Ω includes non-convex regions. For example, if T ⊂ ∂Ω is non-convex (see left panel of
Figure 2) and satisfies the hypotheses of Theorem 1, then for large enough n, all Pareto points in
a neighborhood of T will be unattainable by scalarization. Quantitatively, if f ≥ C on T , then
E|F \ L| ≥ γn

d−1
d + δ−d−1O(n

d−2
d ), as n → ∞, where γ ≥ d−1(d!)

1
d Γ(d−1)|T |δC d−1

d and |T |
is the d−1 dimensional Hausdorff measure of T . It has recently come to our attention that Theorem
1 appears in a more general form in an unpublished manuscript of Baryshnikov and Yukich [19].

We now study non-convexities in the Pareto front which occur due to inherent randomness in the
samples. We show that, even in the case where Ω is convex, there are still numerous small-scale
non-convexities in the Pareto front that can only be detected by Pareto methods. We illustrate this in
the case of the Pareto box problem for d = 2.
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Figure 2: Left: Non-convexities in the Pareto front induced by the geometry of the domain Ω (The-
orem 1). Right: Non-convexities due to randomness in the samples (Theorem 2). In each case, the
larger points are Pareto-optimal, and the large black points cannot be obtained by scalarization.

Theorem 2. Let Y1, . . . , Yn be independent and uniformly distributed on [0, 1]2. Then

1

2
lnn+O(1) ≤ E|L| ≤ 5

6
lnn+O(1), as n→∞.

The proof of Theorem 2 is also postponed to Section 1 of the supplementary material. A proof that
E|F| = lnn+O(1) as n→∞ can be found in [17]. Hence Theorem 2 shows that, asymptotically
and in expectation, only between 1

2 and 5
6 of the Pareto-optimal points can be obtained by linear

scalarization in the Pareto box problem. Experimentally, we have observed that the true fraction of
points is close to 0.7. This means that at least 1

6 (and likely more) of the Pareto points can only be
obtained via Pareto methods even when Ω is convex. Figure 2 gives an example of the sets F and L
from the two theorems.

4 Multi-criteria anomaly detection

Assume that a training set XN = {X1, . . . , XN} of nominal data samples is available. Given a test
sample X , the objective of anomaly detection is to declare X to be an anomaly if X is significantly
different from samples in XN . Suppose that K > 1 different evaluation criteria are given. Each cri-
terion is associated with a measure for computing dissimilarities. Denote the dissimilarity between
Xi and Xj computed using the measure corresponding to the lth criterion by dl(i, j).

We define a dyad by Dij = [d1(i, j), . . . , dK(i, j)]T ∈ RK+ , i ∈ {1, . . . , N}, j ∈ {1, . . . , N} \ i.
Each dyad Dij corresponds to a connection between samples Xi and Xj . Therefore, there are in
total

(
N
2

)
different dyads. For convenience, denote the set of all dyads by D and the space of all

dyads RK+ by D. By the definition of strict dominance in Section 3, a dyad Dij strictly dominates
another dyad Di∗j∗ if dl(i, j) ≤ dl(i∗, j∗) for all l ∈ {1, . . . ,K} and dl(i, j) < dl(i

∗, j∗) for some
l. The first Pareto front F1 corresponds to the set of dyads from D that are not strictly dominated by
any other dyads from D. The second Pareto front F2 corresponds to the set of dyads from D \ F1

that are not strictly dominated by any other dyads from D \ F1, and so on, as defined in Section 3.
Recall that we refer to Fi as a deeper front than Fj if i > j.

4.1 Pareto fronts of dyads

For each sample Xn, there are N − 1 dyads corresponding to its connections with the other N − 1
samples. Define the set of N − 1 dyads associated with Xn by Dn. If most dyads in Dn are located
at shallow Pareto fronts, then the dissimilarities between Xn and the other N − 1 samples are small
under some combination of the criteria. Thus, Xn is likely to be a nominal sample. This is the basic
idea of the proposed multi-criteria anomaly detection method using PDA.

We construct Pareto fronts F1, . . . ,FM of the dyads from the training set, where the total number
of fronts M is the required number of fronts such that each dyad is a member of a front. When a test
sample X is obtained, we create new dyads corresponding to connections between X and training
samples, as illustrated in Figure 1. Similar to many other anomaly detection methods, we connect
each test sample to its k nearest neighbors. k could be different for each criterion, so we denote ki
as the choice of k for criterion i. We create s =

∑K
i=1 ki new dyads, which we denote by the set
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Algorithm 1 PDA anomaly detection algorithm.
Training phase:

1: for l = 1→ K do
2: Calculate pairwise dissimilarities dl(i, j) between all training samples Xi and Xj

3: Create dyads Dij = [d1(i, j), . . . , dK(i, j)] for all training samples
4: Construct Pareto fronts on set of all dyads until each dyad is in a front

Testing phase:
1: nb← [ ] {empty list}
2: for l = 1→ K do
3: Calculate dissimilarities between test sample X and all training samples in criterion l
4: nbl ← kl nearest neighbors of X
5: nb← [nb, nbl] {append neighbors to list}
6: Create s new dyads Dnew

i between X and training samples in nb
7: for i = 1→ s do
8: Calculate depth ei of Dnew

i
9: Declare X an anomaly if v(X) = (1/s)

∑s
i=1 ei > σ

Dnew = {Dnew
1 , Dnew

2 , . . . , Dnew
s }, corresponding to the connections between X and the union of the

ki nearest neighbors in each criterion i. In other words, we create a dyad between X and Xj if Xj

is among the ki nearest neighbors1 of X in any criterion i. We say that Dnew
i is below a front Fl if

Dnew
i � Dl for some Dl ∈ Fl, i.e. Dnew

i strictly dominates at least a single dyad in Fl. Define the
depth of Dnew

i by
ei = min{l |Dnew

i is below Fl}.
Therefore if ei is large, then Dnew

i will be near deep fronts, and the distance between X and the
corresponding training sample is large under all combinations of the K criteria. If ei is small, then
Dnew
i will be near shallow fronts, so the distance between X and the corresponding training sample

is small under some combination of the K criteria.

4.2 Anomaly detection using depths of dyads

In k-NN based anomaly detection algorithms such as those mentioned in Section 2, the anomaly
score is a function of the k nearest neighbors to a test sample. With multiple criteria, one could de-
fine an anomaly score by scalarization. From the probabilistic properties of Pareto fronts discussed
in Section 3.1, we know that Pareto methods identify more Pareto-optimal points than linear scalar-
ization methods and significantly more Pareto-optimal points than a single weight for scalarization2.

This motivates us to develop a multi-criteria anomaly score using Pareto fronts. We start with the
observation from Figure 1 that dyads corresponding to a nominal test sample are typically located
near shallower fronts than dyads corresponding to an anomalous test sample. Each test sample is
associated with s new dyads, where the ith dyad Dnew

i has depth ei. For each test sample X , we
define the anomaly score v(X) to be the mean of the ei’s, which corresponds to the average depth
of the s dyads associated with X . Thus the anomaly score can be easily computed and compared to
the decision threshold σ using the test

v(X) =
1

s

s∑
i=1

ei
H1

≷
H0

σ.

Pseudocode for the PDA anomaly detector is shown in Algorithm 1. In Section 3 of the supplemen-
tary material we provide details of the implementation as well as an analysis of the time complexity
and a heuristic for choosing the ki’s that performs well in practice. Both the training time and the

1If a training sample is one of the ki nearest neighbors in multiple criteria, then multiple copies of the dyad
corresponding to the connection between the test sample and the training sample are created.

2Theorems 1 and 2 require i.i.d. samples, but dyads are not independent. However, there are O(N2) dyads,
and each dyad is only dependent on O(N) other dyads. This suggests that the theorems should also hold for the
non-i.i.d. dyads as well, and it is supported by experimental results presented in Section 2 of the supplementary
material.
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Table 1: AUC comparison of different methods for both experiments. Best AUC is shown in bold.
PDA does not require selecting weights so it has a single AUC. The median and best AUCs (over all
choices of weights selected by grid search) are shown for the other four methods. PDA outperforms
all of the other methods, even for the best weights, which are not known in advance.

(a) Four-criteria simulation (± standard error)

Method AUC by weight
Median Best

PDA 0.948 ± 0.002
k-NN 0.848 ± 0.004 0.919 ± 0.003

k-NN sum 0.854 ± 0.003 0.916 ± 0.003
k-LPE 0.847 ± 0.004 0.919 ± 0.003
LOF 0.845 ± 0.003 0.932 ± 0.003

(b) Pedestrian trajectories

Method AUC by weight
Median Best

PDA 0.915
k-NN 0.883 0.906

k-NN sum 0.894 0.911
k-LPE 0.893 0.908
LOF 0.839 0.863

time required to test a new sample using PDA are linear in the number of criteria K. To handle
multiple criteria, other anomaly detection methods, such as the ones mentioned in Section 2, need
to be re-executed multiple times using different (non-negative) linear combinations of the K crite-
ria. If a grid search is used for selection of the weights in the linear combination, then the required
computation time would be exponential in K. Such an approach presents a computational problem
unless K is very small. Since PDA scales linearly with K, it does not encounter this problem.

5 Experiments

We compare the PDA method with four other nearest neighbor-based single-criterion anomaly de-
tection algorithms mentioned in Section 2. For these methods, we use linear combinations of the
criteria with different weights selected by grid search to compare performance with PDA.

5.1 Simulated data with four criteria

First we present an experiment on a simulated data set. The nominal distribution is given by the
uniform distribution on the hypercube [0, 1]4. The anomalous samples are located just outside of
this hypercube. There are four classes of anomalous distributions. Each class differs from the
nominal distribution in one of the four dimensions; the distribution in the anomalous dimension is
uniform on [1, 1.1]. We draw 300 training samples from the nominal distribution followed by 100
test samples from a mixture of the nominal and anomalous distributions with a 0.05 probability of
selecting any particular anomalous distribution. The four criteria for this experiment correspond to
the squared differences in each dimension. If the criteria are combined using linear combinations,
the combined dissimilarity measure reduces to weighted squared Euclidean distance.

The different methods are evaluated using the receiver operating characteristic (ROC) curve and
the area under the curve (AUC). The mean AUCs (with standard errors) over 100 simulation runs
are shown in Table 1(a). A grid of six points between 0 and 1 in each criterion, corresponding to
64 = 1296 different sets of weights, is used to select linear combinations for the single-criterion
methods. Note that PDA is the best performer, outperforming even the best linear combination.

5.2 Pedestrian trajectories

We now present an experiment on a real data set that contains thousands of pedestrians’ trajectories
in an open area monitored by a video camera [20]. Each trajectory is approximated by a cubic spline
curve with seven control points [21]. We represent a trajectory with l time samples by

T =

[
x1 x2 . . . xl
y1 y2 . . . yl

]
,

where [xt, yt] denote a pedestrian’s position at time step t.
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Figure 3: Left: ROC curves for PDA and attainable region for k-LPE over 100 choices of weights.
PDA outperforms k-LPE even under the best choice of weights. Right: A subset of the dyads for the
training samples along with the first 100 Pareto fronts. The fronts are highly non-convex, partially
explaining the superior performance of PDA.

We use two criteria for computing the dissimilarity between trajectories. The first criterion is to
compute the dissimilarity in walking speed. We compute the instantaneous speed at all time steps
along each trajectory by finite differencing, i.e. the speed of trajectory T at time step t is given
by
√

(xt − xt−1)2 + (yt − yt−1)2. A histogram of speeds for each trajectory is obtained in this
manner. We take the dissimilarity between two trajectories to be the squared Euclidean distance
between their speed histograms. The second criterion is to compute the dissimilarity in shape. For
each trajectory, we select 100 points, uniformly positioned along the trajectory. The dissimilarity
between two trajectories T and T ′ is then given by the sum of squared Euclidean distances between
the positions of T and T ′ over all 100 points.

The training sample for this experiment consists of 500 trajectories, and the test sample consists of
200 trajectories. Table 1(b) shows the performance of PDA as compared to the other algorithms
using 100 uniformly spaced weights for linear combinations. Notice that PDA has higher AUC than
the other methods under all choices of weights for the two criteria. For a more detailed comparison,
the ROC curve for PDA and the attainable region for k-LPE (the region between the ROC curves
corresponding to weights resulting in the best and worst AUCs) is shown in Figure 3 along with
the first 100 Pareto fronts for PDA. k-LPE performs slightly better at low false positive rate when
the best weights are used, but PDA performs better in all other situations, resulting in higher AUC.
Additional discussion on this experiment can be found in Section 4 of the supplementary material.

6 Conclusion

In this paper we proposed a new multi-criteria anomaly detection method. The proposed method
uses Pareto depth analysis to compute the anomaly score of a test sample by examining the Pareto
front depths of dyads corresponding to the test sample. Dyads corresponding to an anomalous
sample tended to be located at deeper fronts compared to dyads corresponding to a nominal sample.
Instead of choosing a specific weighting or performing a grid search on the weights for different
dissimilarity measures, the proposed method can efficiently detect anomalies in a manner that scales
linearly in the number of criteria. We also provided a theorem establishing that the Pareto approach
is asymptotically better than using linear combinations of criteria. Numerical studies validated our
theoretical predictions of PDA’s performance advantages on simulated and real data.
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