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S.1 Explanation using Expectation Propagation (EP)

Our goal is to approximate the posterior distribution

p(β, z1:n |x1:n, η) ∝ p(β, z1:n, x1:n | η)

using a fully factorized distribution

q(β, z1:n) = q(β)
∏n
i=1 q(zi).

Different from the mean-field approach, Expectation Propagation (EP) tries to minimize the following
KL-divergence [4, 5],

KLEP(p||q) =

∫ ∑
z1:n

p(β, z1:n |x1:n, η) log
p(β, z1:n |x1:n, η)

q(β, z1:n)
dβ.

First, taking the derivative of KLEP(p||q) w.r.t. q(zi) and setting it to zero gives

q(zi) ∝
∫ ∑

z−i

p(β, z1:n |x1:n, η)dβ =

∫
p(zi, xi |β)p(β |x−i, η)dβ,

where z−i indicates {zj , j = 1, . . . , n, but j 6= i}. (x−i is similarly defined.) This is intractable. If
we use q(β) as an approximation to the true marginal posterior p(β |x−i, η), and this gives,

q(zi) ∝
∫
p(zi, xi |β)p(β |x−i, η)dβ ≈

∫
p(zi, xi |β)q(β)dβ = Eq(β) [p(xi, zi |β)] ,

which is precisely the definition of q(zi) as in Eq. 6 in the main paper.

Next taking the derivative of KLEP(p||q) w.r.t. q(β) and setting it to zero gives

q(β) =
∑
z1:n

p(β, z1:n |x1:n, η) =
∑
z1:n

p(β | z1:n, x1:n, η)p(z1:n |x1:n, η),

This is intractable. We thus use q(z1:n) =
∏n
i=1 q(zi) as an approximation to the true marginal

posterior p(z1:n |x1:n, η), and this gives,

q(β) ≈
∑
z1:n

p(β | z1:n, x1:n, η)q(z1:n) = Eq(z1:n) [p(β | z1:n, x1:n, η)]

= exp
{

logEq(z1:n) [p(β | z1:n, x1:n, η)]
}

≤ exp
{
Eq(z1:n) [log p(β | z1:n, x1:n, η)]

}
∝ exp

{
Eq(z1:n) [log p(z1:n, x1:n, β, η)]

}
,

∗Work was done when the author was with Princeton University.
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where the inequality comes from the concavity of the log function. Note that if we assumed q(zi) is a
peaky distribution; the inequality is almost an equality.1 We finally have

q(β) ∝ exp
{
Eq(z1:n) [log p(z1:n, x1:n, β, η)]

}
,

which is the update for q(β) as in Eq. 7 in the main paper.

S.2 Truncation-free online variational inference for the HDP

Hierarchical Dirichlet process (HDP) topic models [6] can be summarized using the stick-breaking
construction as follows,

1. Draw top-level topics θk and sticks πk for k = 1, 2, · · · ,
θk ∼ Dirichlet(η),

πk = π̄k
∏k−1
l=1 (1− π̄l), π̄k ∼ theta(1, a)

2. For each document t, draw document-level topic proportions φt,2

φt ∼ Dirichlet(bπ).

For each word xtn in document t,
(a) Draw the topic index ztn ∼ Mult(φt).
(b) Draw the word xtn ∼ Mult(θztn).

Unfortunately, topic proportions φt is not conjugate to sticks π. We adopt an auxiliary variable
approach proposed in [6]. The conditional distribution of of zt , zt,1:nt ,

p(zt|π) =

∫
p(zt|φt)p(φt|π)dφt =

Γ(b)

Γ(b+ nt)

∏
k

Γ(bπk + ntk)

Γ(bπk)
, (1)

where ntk is the number of the words assigned to topic k in document t and nt is the number of the
words in document t. By introducing a random variable stk, the random number of occupied tables
in a Chinese restaurant process with ntk customers and concentration parameter bπk, we have

p(zt, st|π) =
Γ(b)

Γ(b+ nt)

∏
k

S(ntk, stk)(bπk)stk , (2)

where S(n,m) are unsigned Stirling numbers of the first kind [1]. Integrating out variable st in Eq. 2
gives the marginal distribution of zt given sticks π in Eq. 1. Furthermore, variable st is conjugate to
sticks π. Given the formulation in Eq. 2, we can sample stk given ntk using,

p(stk|ntk, bπk) =
Γ(bπk)

Γ(bπk + ntk)
S(ntk, stk)(bπk)stk . (3)

S.2.1 Online variational updates

The variational distribution for the global hidden variables θk, π̄k is k = 1, 2, · · · .
q(θ, π̄) =

∏
k q(θk|λk)q(π̄k|uk, vk),

where λk is the Dirichlet parameter and (uk, vk) is the theta parameter. Suppose we have obtained
one sample3 of the hidden variables st and zt for document t. Then we have

λkw ← λkw + ρt(−λkw + η +Dntkw)

uk ← uk + ρt(−uk + 1 +Dstk)

vk ← vk + ρt(−vk + a+D
∑∞
j=k+1 stj).

1This is usually satisfied in practice—in mixture modeling, most data points belong to one mixture; in topic
modeling, words in a document only belong to a very small set of topics [9].

2Here the Dirichlet distribution is a generalized version of its finite counterpart [7].
3The case with more than one samples can be similarly derived.
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where ntkw is number of times of word w assigned to topic k in document t and D is the total number
of documents. Note that stk and ntkw will be always 0 after k is larger than the current number of
topics. This results in a property that q(θk) will remain as the prior distribution p(θk), if there is no
word assignment. We therefore do not need to store those topics until they are instantiated. This also
applies to the sticks parameter (uk, vk).

S.2.2 Gibbs sampling for the local variables

We use a collapsed Gibbs sampler similar to that in [6] to obtain samples for st and zt. The idea is to
use the variational distribution q(π̄|u, v) and q(θ|λ) as “priors”. Note that θ can be marginalized out
while π̄ can not. We thus sample π̄ jointly with st and zt. We denote the vocabulary size as W .

Sampling ztn. The conditional distribution for ztn (word w) as follows,

p(ztn = k|z−tn, λ, π) ∝ (ntk,−tn + bπk)
nkw,−tn + λkw
nk,−tn +

∑
w λkw

When k > T , where T is the current number of topics, this becomes

p(ztn = k|z−tn, λ, π) ∝ bπk/W.

This implies

p(ztn > T |z−tn, λ, π) ∝ b(1−
∑T
k=1 πk)/W.

This indicates that we only need to sample ztn up to T + 1. When a new topic is generated, we set
k = T + 1, and sample π̄T+1 ∼ Beta(1, a) and set πT+1 = π̄T+1

∏T
k=1(1− π̄k).

Sampling stk. Sampling stk can be done using Eq. 3.

Sampling π. We sample π given the following conditional distribution,

p(π̄k) ∝ π̄uk−1+
∑

t∈S stk
k (1− π̄k)vk−a+

∑
t∈S

∑∞
j=k+1 stj .

We do not need to sample sticks π̄k when k > T ; they just come from the prior distribution.

S.3 Computing the held-out likelihood

The likelihood we want to compute is defined as

likelihoodpw , log p(Dtest | Dtrain)/
∑
xi∈Dtest

|xi|.

Since this is intractable for both DP and HDP, we use following approximations. For both DP and
HDP, we use the mean of the global variational distribution q(θ, π̄) to represent the inferred model.
We ignore the unused components in our algorithm. This results in θ̂ = Eq(θ) [θ] and π̂ = Eq(π̄) [π],
both with finite dimensions. In other words, DP mixtures reduce to a finite mixture model and HDP
mixtures reduce to LDA [2]. Then log p(Dtest | Dtrain) is approximated by

log p(Dtest | Dtrain) ≈
∑

xi∈Dtest

log p(xi | θ̂, π̂).

For DP mixtures, the term p(xi | θ̂, π̂) is analytically tractable,

p(xi | θ̂, π̂)DP =
∑
k

π̂k
∏
w

θ̂
∑

j 1[xij=w]

kw .
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However, for HDP mixtures, the term log p(xi | θ̂, π̂) is still intractable. We propose to use importance
sampling. [8] shows that importance sampling can underestimate the probability, but usually gives
the correct ranking of different models. To be concrete,

p(xi | θ̂, π̂)HDP =

∫
p(φi | π̂)

∏
j

∑
zij

p(zij |φi)p(xij | θ̂, zij)dφi.

To approximate this integral, we first use a collapsed Gibbs sampler to sample topic assignments zij ,
then construct a proposal distribution over φi using these samples [3],

q(φi) = Dirichlet(φi | . . . , bπ̂k +
∑
j

1[zij = k], . . . ).

Samples from q(φi) are used for importance sampling to approximate p(xi | θ̂, π̂)HDP.
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