From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper


Skander Mensi, Richard Naud, Wulfram Gerstner


Variability in single neuron models is typically implemented either by a stochastic Leaky-Integrate-and-Fire model or by a model of the Generalized Linear Model (GLM) family. We use analytical and numerical methods to relate state-of-the-art models from both schools of thought. First we find the analytical expressions relating the subthreshold voltage from the Adaptive Exponential Integrate-and-Fire model (AdEx) to the Spike-Response Model with escape noise (SRM as an example of a GLM). Then we calculate numerically the link-function that provides the firing probability given a deterministic membrane potential. We find a mathematical expression for this link-function and test the ability of the GLM to predict the firing probability of a neuron receiving complex stimulation. Comparing the prediction performance of various link-functions, we find that a GLM with an exponential link-function provides an excellent approximation to the Adaptive Exponential Integrate-and-Fire with colored-noise input. These results help to understand the relationship between the different approaches to stochastic neuron models.