Similarity-based Learning via Data Driven Embeddings

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper Supplemental


Purushottam Kar, Prateek Jain


We consider the problem of classification using similarity/distance functions over data. Specifically, we propose a framework for defining the goodness of a (dis)similarity function with respect to a given learning task and propose algorithms that have guaranteed generalization properties when working with such good functions. Our framework unifies and generalizes the frameworks proposed by (Balcan-Blum 2006) and (Wang et al 2007). An attractive feature of our framework is its adaptability to data - we do not promote a fixed notion of goodness but rather let data dictate it. We show, by giving theoretical guarantees that the goodness criterion best suited to a problem can itself be learned which makes our approach applicable to a variety of domains and problems. We propose a landmarking-based approach to obtaining a classifier from such learned goodness criteria. We then provide a novel diversity based heuristic to perform task-driven selection of landmark points instead of random selection. We demonstrate the effectiveness of our goodness criteria learning method as well as the landmark selection heuristic on a variety of similarity-based learning datasets and benchmark UCI datasets on which our method consistently outperforms existing approaches by a significant margin.