Uniqueness of Belief Propagation on Signed Graphs

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper SpotlightSlide


Yusuke Watanabe


While loopy Belief Propagation (LBP) has been utilized in a wide variety of applications with empirical success, it comes with few theoretical guarantees. Especially, if the interactions of random variables in a graphical model are strong, the behaviors of the algorithm can be difficult to analyze due to underlying phase transitions. In this paper, we develop a novel approach to the uniqueness problem of the LBP fixed point; our new “necessary and sufficient” condition is stated in terms of graphs and signs, where the sign denotes the types (attractive/repulsive) of the interaction (i.e., compatibility function) on the edge. In all previous works, uniqueness is guaranteed only in the situations where the strength of the interactions are “sufficiently” small in certain senses. In contrast, our condition covers arbitrary strong interactions on the specified class of signed graphs. The result of this paper is based on the recent theoretical advance in the LBP algorithm; the connection with the graph zeta function.