Appendix

A Proofs

Proof of Theorem 2. Fix € > 0 and let x*(¢) € conv(.A) be such that
f(x*(e)) < inf f(x)+e.

xeconv(A)

Using smoothness we get, for any «,
L
fxe+a(ay —x¢)) < f(xe) + a(VF(xe), ar — x¢) + ;arﬂat —x¢f|"
L ,
< flxe) + a(Vfxe),ar —xe) + —a” (lael| + f[xell)

< f0x) — (VI (). ai) + (ViGe) X)) + - (2Ra) . )

The second inequality follows by triangle inequality. The last inequality follows because
latl, [|x¢]| < R. Now, by convexity of f,
0p = f(x¢) = F(x7(€)) < (Vf(xe), % — X7 (€))
< (VF(xe), xe) + (= Vf(xe), %" (€))
< (V) %) + (=Vf(xe), ) (10)
The last inequality holds because a; maximized the linear functional (—V f(x;), -} over A and hence

also over conv(A). Thus, (—V f(x), a;) > (=V f(x¢),x*(€)) as x*(¢) € conv(.A). Plugging (10)
into (9), we have, for any o > 0,

flxe +ala — xp)) < f(x¢) — ady + % 2Ra)" .

Since x;41 is chosen by minimizing the LHS over « € [0, 1], we have

Foxisn) < fx) + min (~ad+ T2RaY)

ael0,1]

Thus, we have, for all ¢ > 0,

L
Siy1 <6 i —ad;+—=(2Ra)") .
1 < t+arél[gll]< abd: + —(2Ra) )
For ¢t = 0, choose &« = 1 on the RHS to get 6; < L(2R)"/r. Since d;’s are monotonically non-
increasing, this shows d; < L(2 R)"/r for all t > 1. Hence, for ¢t > 1, we can choose « such that
o't =6,/(L2"R") € [0, 1] on the RHS to get

r

VE>1, 61 <0 — (11)%-
r) w1 (2R)1'71

Solving this recursion easily gives, forall £ > 1,

K,.LR"

Fer) = f(x7) < — =~
for some K, that depends only on 7. 0
Proof of Corollary 3. Since h € conv(A) and [|-|| , is equivalent to || - ||, we have

inf h—glt =0.
g€econv(A) H QH#

Thus, using p-uniform smoothness of ||- — h||%,, Theorem 2 gives

Ige+1 = Bllf = O (7).
The corollary now follows by again noting the equivalence of the two norms. O
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