
Structured sparse coding via lateral inhibition

Karol Gregor
Janelia Farm, HHMI
19700 Helix Drive
Ashburn, VA, 20147

karol.gregor@gmail.com

Arthur Szlam
The City College of New York
Convent Ave and 138th st
New York, NY, 10031

aszlam@courant.nyu.edu

Yann LeCun
New York University
715 Broadway, Floor 12
New York, NY, 10003
yann@cs.nyu.edu

Abstract

This work describes a conceptually simple method for structured sparse coding
and dictionary design. Supposing a dictionary with K atoms, we introduce a
structure as a set of penalties or interactions between every pair of atoms. We
describe modifications of standard sparse coding algorithms for inference in this
setting, and describe experiments showing that these algorithms are efficient. We
show that interesting dictionaries can be learned for interactions that encode tree
structures or locally connected structures. Finally, we show that our framework
allows us to learn the values of the interactions from the data, rather than having
them pre-specified.

1 Introduction

Sparse modeling (Olshausen and Field, 1996; Aharon et al., 2006) is one of the most successful
recent signal processing paradigms. A set of N data points X in the Euclidean space Rd is written
as the approximate product of a d× k dictionaryW and k ×N coefficients Z, where each column
of Z is penalized for having many non-zero entries. In equations, if we take the approximation to
X in the least squares sense, and the penalty on the coefficient matrix to be the l1 norm, we wish to
find

argminZ,W

∑

k

||Wzk − xk||2 + λ||zk||1. (1)

In (Olshausen and Field, 1996), this model is introduced as a possible explanation of the emergence
of orientation selective cells in the primary visual cortex V1; the matrix representingW corresponds
to neural connections.

It is sometimes appropriate to enforce more structure on Z than just sparsity. For example, we
may wish to enforce a tree structure on Z, so that certain basis elements can be used by any data
point, but others are specific to a few data points; or more generally, a graph structure on Z that
specifies which elements can be used with which others. Various forms of structured sparsity are
explored in (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Kim and Xing, 2010; Jacob et al., 2009;
Baraniuk et al., 2009). From an engineering perspective, structured sparse models allow us to access
or enforce information about the dependencies between codewords, and to control the expressive
power of the model without losing reconstruction accuracy. From a biological perspective, structured
sparsity is interesting because structure and sparsity are present in neocortical representations. For
example, neurons in the same mini-columns of V1 are receptive to similar orientations and activate
together. Similarly neurons within columns in the inferior temporal cortex activate together and
correspond to object parts.

In this paper we introduce a new formulation of structured sparsity. The l1 penalty is replaced with a
set of interactions between the coding units corresponding to intralayer connections in the neocortex.
For every pair of units there is an interaction weight that specifies the cost of simultaneously activat-
ing both units. We will describe several experiments with the model. In the first set of experiments

1

Figure 1: Model (3) in the locally connected setting of subsection 3.3. Code units are placed in two
dimensional grid above the image (here represented in 1-d for clarity). A given unit connects to a
small neighborhood of an input via W and to a small neighborhood of code units via S. The S is
present and positive (inhibitory) if the distance d between units satisfies r1 < d < r2 for some radii.

we set the interactions to reflect a prespecified structure. In one example we create a locally con-
nected network with inhibitory connections in a ring around every unit. Trained with natural images,
this leads to dictionaries with Gabor-like edge elements with similar orientations placed in nearby
locations, leading to the pinwheel patterns analogous to those observed in V1 of higher mammals.
We also place the units on a tree and place inhibitory interactions between different branches of the
tree, resulting in edges of similar orientation being placed in the same branch of the tree, see for
example (Hyvarinen and Hoyer, 2001). In the second set of experiments we learn the values of the
lateral connections instead of setting them, in effect learning the structure. When trained on images
of faces, the system learns to place different facial features at correct locations in the image.

The rest of this paper is organized as follows: in the rest of this section, we will introduce our model,
and describe its relationship between the other structured sparsity mentioned above. In section 2, we
will describe the algorithms we use for optimizing the model. Finally, in section 3, we will display
the results of experiments showing that the algorithms are efficient, and that we can effectively learn
dictionaries with a given structure, and even learn the structure.

1.1 Structured sparse models

We start with a model that creates a representation Z of data points X viaW by specifying a set of
disallowed index pairs of Z: U = {(i1, j1), (i2, j2), ..., (ikjk)} - meaning that representations Z are
not allowed if both Zi #= 0 and Zj #= 0 for any given pair (i, j) ∈ U . Here we constrain Z ≥ 0. The
inference problem can be formulated as

min
Z≥0

N∑

j=1

||WZj −Xj ||2,

subject to
ZZT (i, j) = 0, i, j ∈ U.

Then the Langrangian of the energy with respect to Z is
N∑

j=1

||WZj −Xj ||2 + ZT
j SZj , (2)

where Sij are the dual variables to each of the constraints in U , and are 0 in the unconstrained pairs.
A local minimum of the constrained problem is a saddle point for (2). At such a point, Sij can be
interpreted as the weight of the inhibitory connection between Wi and Wj necessary to keep them
from simultaneously activating. This observation will be the starting point for this paper.

1.2 Lateral inhibition model

In practice, it is useful to soften the constraints in U to a fixed, prespecified penalty, instead of a
maximization over S as would be suggested by the Lagrangian form. This allows some points to

2

use proscribed activations if they are especially important for the reconstruction. To use units with
both positive and negative activations we take absolute values and obtain

min
W,Z

∑

j

||WZj −Xj ||2 + |Zj |TS|Zj |, (3)

||Wj || = 1 ∀j.
where |Zj | denotes the vector obtained from the vector Zj by taking absolute values of each com-
ponent, and Zj is the jth column of Z. S will usually be chosen to be symmetric and have 0 on the
diagonal. As before, instead of taking absolute values, we can instead constrain Z ≥ 0 allowing to
write the penalty as ZT

j SZj . Finally, note that we can also allow S to be negative, implementing
excitatory interaction between neurons. One then has to prevent the sparsity term to go to minus in-
finity by limiting the amount of excitation a given element can experience (see the algorithm section
for details).

The Lagrangian optimization tries to increase the inhibition between a forbidden pair whenever
it activates. If our goal is to learn the interactions, rather than enforce the ones we have chosen,
then it makes sense to do the opposite, and decrease entries of S corresponding to pairs which are
often activated simultaneously. To force a nontrivial solution and encourage S to economize a fixed
amount of inhibitory power, we also propose the model

min
S

min
W,Z

∑

j

||WZj −Xj ||2 + |Zj |TS|Zj |, (4)

Z ≥ 0, ||Wj || = 1 ∀j,
0 ≤ S ≤ β, S = ST , and|Sj |1 = α ∀j

Here, α and β control the total inhibitory power of the activation of an atom inW , and how much
the inhibitory power can be concentrated in a few interactions (i.e. the sparsity of the interactions).
As above, usually one would also fix S to be 0 on the diagonal.

1.3 Lateral inhibition and weighted l1

Suppose we have fixed S andW , and are inferring z from a datapoint x. Furthermore, suppose that
a subset I of the indices of z do not inhibit each other. Then if Ic is the complement of I , for any
fixed value of zIc (here the subscript refers to indices of the column vector z), the cost of using zI
is given by

||WIzI − x||2 +
∑

i∈I

λi|zi|,

where λi =
∑

j∈Ic Sij |zj |. Thus for zIc fixed, we get a weighted lasso in zI .

1.4 Relation with previous work

As mentioned above, there is a growing literature on structured dictionary learning and structured
sparse coding. The works in (Baraniuk et al., 2009; Huang et al., 2009) use a greedy approach for
structured sparse coding based on OMP or CoSaMP. These methods are fast when there is an ef-
ficient method for searching the allowable additions to the active set of coefficients at each greedy
update, for example if the coefficients are constrained to lie on a tree. These works also have
provable recovery properties when the true coefficients respect the structure, and when the dictio-
naries satisify certain incoherence properites. A second popular basic framework is group sparsity
(Kavukcuoglu et al., 2009; Jenatton et al., 2010; Kim and Xing, 2010; Jacob et al., 2009). In these
works the coefficients are arranged into a predetermined set of groups, and the sparsity term penal-
izes the number of active groups, rather than the number of active elements. This approach has the
advantage that the resulting inference problems are convex, and many of the works can guarantee
convergence of their inference schemes to the minimal energy.

In our framework, the interactions in S can take any values, giving a different kind of flexibility. Al-
though our framework does not have a convex inference, the algorithms we propose experimentally
efficiently find good codes for every S we have tried. Also note that in this setting, recovery theo-
rems with incoherence assumptions are not applicable, because we will learn the dictionaries, and

3

so there is no guarantee that the dictionaries will satisfy such conditions. Finally, a major difference
between the methods presented here and those in the other works is that we can learn the S from the
data simultaneously with dictionary; as far as we know, this is not possible via the above mentioned
works.

The interaction between a set of units of the form zTRz + θT z was originally used in Hopfield
nets (Hopfield, 1982); there the z are binary vectors and the inference is deterministic. Boltzman
machines (Ackley et al., 1985) have a similar term, but the z and the inference are stochastic, e.g.
Markov chain Monte carlo. With S fixed, one can consider our work a special case of real valued
Hopfield nets with R = WTW + S and θ = WTx; because of the form of R and θ, fast inference
schemes from sparse coding can be used. When we learn S, the constraints on S serve the same
purpose as the contrastive terms in the updates in a Boltzman machine.

In (Garrigues and Olshausen, 2008) lateral connections were modeled as the connections of an Ising
model with the Ising units deciding which real valued units (from which input was reconstructed)
were on. The system learned to typically connect similar orientations at a given location. Our
model is related but different - it has no second layer, the lateral connections control real instead
of binary values and the inference and learning is simpler, at the cost of a true generative model.
In (Druckmann and Chklovskii, 2010) the lateral connections were trained so that solutions zt to a
related ODE starting from the inferred code of z = z0 of an input x would map via W to points
close to x. In that work, the lateral connections were trained in response to the dictionary, rather
than simultaneously with it, and did not participate in inference.

In (Garrigues and Olshausen, 2010) the coefficients were given by a Laplacian scale mixture prior,
leading to multiplicative modulation, as in this work. However, in contrast, in our case the sparsity
coefficients are modulated by the units in the same layer, and we learn the modulation, as opposed
to the fixed topology in (Garrigues and Olshausen, 2010).

2 Algorithms

In this section we will describe several algorithms to solve the problems in (3) and (4). The basic
framework will be to alternate betweens updates to Z, W , and, if desired, S. First we discuss
methods for solving for Z withW and S fixed.

2.1 Inferring Z fromW , X , and S.

The Z update is the most time sensitive, in the sense that the other variables are fixed after train-
ing, and only Z is inferred at test time. In general, any iterative algorithm that can be used for
the weighted basis pursuit problem can be adapted to our setting; the weights just change at each
iteration. We will describe versions of FISTA (Beck and Teboulle, 2009) and coordinate descent
(Wu and Lange, 2008; Li and Osher, 2009). While we cannot prove that the algorithms converge to
the minimum, in all the applications we have tried, they perform very well.

2.1.1 A FISTA like algorithm

The ISTA (Iterated Shrinkage Thresholding Algorithm) minimizes the energy ||Wz − x||2 + λ|z|1
by following gradient steps in the first term with a “shrinkage”; this can be thought of as gradient
steps where any coordinate which crosses zero is thresholded. In equations:

zt+1 = sh(λ/L)(Z −
1

L
WT (Wzt − x)),

where sha(b) = sign(b) · ha(|b|), and ha(b) = max(b − a, 0). In the case where z is constrained
to be nonnegative, sh reduces to h. In this paper, λ is a vector depending on the current value of z,
rather than a fixed scalar. After each update, λ is updated by λ = λt+1 ← Szt+1.

Nesterov’s accelerated gradient descent has been found to be effective in the basis pursuit set-
ting, where it is called FISTA (Beck and Teboulle, 2009). In essence one adds to the z update
a momentum that approaches one with appropriate speed. Specifically the update equation on z

4

Algorithm 1 ISTA
function ISTA(X,Z,W,L)
Require: L > largest eigenvalue of
WTW .
Initialize: Z = 0,
repeat
λ = S|z|
Z = sh(λ/L)(Z− 1

LW
T (WZ−X))

until change in Z below a threshold
end function

Algorithm 2 Coordinate Descent
function CoD(X,Z,W, S, S̄)
Require: S̄ = I −WT

d Wd

Initialize: Z = 0; B = WTX; λ = 0
repeat

Z̄ = hλ(B)
k = argmax|Z − Z̄|
B = B + S̄·k(Z̄k − Zk)
λ = λ+ S·k(Z̄k − Zk)
Zk = Z̄k

until change in Z is below a threshold
Z = hα(B)

end function

becomes zt+1 = yt + rt(yt − yt−1), yt = sh(λ/L)(Z − 1
LW

T (Wzt − x)), rt = ut−1
ut+1

and
ut+1 = (1+

√
1 + 4u2)/2, u1 = 1. Although our problem is not convex and we do not have any of

the normal guarantees, empirically, the Nesterov acceleration works extremely well.

2.1.2 Coordinate descent

The coordinate descent algorithm iteratively selects a single coordinate j of z, and fixing the other
coordinates, does a line search to find the value of z(k) with the lowest energy. The coordinate
selection can be done by picking the entry with the largest gradient Wu and Lange (2008), or by
approximating the value of the energy after the line search Li and Osher (2009). Suppose at the tth
step we have chosen to update the kth coordinate of zt. Because S is zero on its main diagonal, the
penalty term is not quadratic in zt+1(k), but is simply a λ(k)zt+1(k), where λ = Szk (which only
depends on the currently fixed coordinates). Thus there is an explicit solution zt+1 = hλ(B(k)),
where B is WT (Wzt − x). Just like in the setting of basis pursuit this has the nice property that
by updating B and λ, and using a precomputedWTW , each update only requires O(K) operations,
where K is the number of atoms in the dictionary; and in particular the dictionary only needs to be
multiplied by x once. In fact, when the actual solution is very sparse and the dictionary is large, the
cost of all the iterations is often less than the cost of multiplyingWTx.

We will use coordinate descent for a bilinear model below; in this case, we alternate updates of the
left coefficients with updates of the right coefficients.

2.2 UpdatingW and S

The updates toW and S can be made after each new z is coded, or can be made in batches, say after
a pass through the data. In the case of per datapoint updates, we can proceed via a gradient descent:
the derivative of all of our models with respect toW for a fixed x and z is (Wz − x)zT . The batch
updates toW can be done as inK-SVD (Aharon et al., 2006).

It is easier to update S in (4) in batch mode, because of the constraints. With W and Z fixed, the
constrained minimization of S is a linear program. We have found that it is useful to average the
current S with the minimum of the linear program in the update.

3 Experiments

In this section we test the models (3,4) in various experimental settings.

3.1 Inference

First we test the speed of convergence and the quality of the resulting state of ISTA, FISTA and
coordinate descent algorithms. We use the example of section 3.4 where the input consist of image
patches and the connections in S define a tree. The figure 3.1 shows the energy after each iteration

5

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

40

45

50

55

FISTA
ISTA
CD

||X −WZ||2 + η|ZT |S|Z| η|ZT |S|Z|
η FISTA ISTA CoD FISTA ISTA CoD
.8 21.67 21.67 21.79 1e-9 .01 0
.4 21.44 21.43 21.79 .05 .08 .03
0.2 21.12 21.12 21.68 .28 .32 .21
0.1 20.63 20.67 21.19 .87 .94 .78
0.05 19.64 19.67 19.94 2.01 2.07 2.0

Figure 2: On the left: The energy values after each iteration of the 3 methods, averaged over all the
data points. On the right: values of the average energy 1

N

∑
j ||WZj − Xj ||2 + η|Zj |TS|Zj | and

average S sparsity 1
N

∑
j |Zj |TS|Zj |. The “oracle” best tree structured output computed by using

an exhaustive search over the projections of each data point onto each branch of the tree has the
average energy 20.58 and sparsity 0. S,W , and X are as in section 3.4

of the three methods average over all data points. We can see that coordinate descent very quickly
moves to its resting state (note that each iteration is much cheaper as well, only requiring a few
column operations), but does not on average tend to be quite as good a code as ISTA or FISTA. We
also see that FISTA gets as good a code as ISTA but after far fewer iterations.

To test the absolute quality of the methods, we also measure against the “oracle” - the lowest possible
energy when none of the constraints are broken, that is, when |z|S|z| = 0. This energy is obtained
by exhaustive search over the projections of each data point onto each branch of the tree. In the
table in Figure 3.1, we give the values for the average energy 1

N

∑
j ||WZj −Xj ||2 + η|Zj |TS|Zj |

and for the sparsity energy 1
N

∑
j η|Zj |TS|Zj | for various values of η. Notice that for low values

of η, the methods presented here give codes with better energy than the best possible code on the
tree, because the penalty is small enough to allow deviations from the tree structure; but when the η
parameter is increased, the algorithms still compare well against the exhaustive search.

3.2 Scaling

An interesting property of the models (3,4) is their scaling: if the input is re-scaled by a constant
factor the optimal code is re-scaled by the same factor. Thus the model preserves the scale infor-
mation and the input doesn’t need to be normalized. This is not the case in the standard l1 sparse
coding model (1). For example if the input becomes small the optimal code is zero.

In this subsection we train the model (3) on image patches. In the first part of the experiment we
preprocess each image patch by subtracting its mean and set the elements of S to be all equal and
positive except for zeros on the diagonal. In the second part of the experiment we use the original
image patches without any preprocessing. However since the mean is the strongest component we
introduce the first example of structure: We select one of the components of z and disconnect it from
all the other components. The resulting S is equal to a positive constant everywhere except on the
diagonal, the first row, and the first column, where it is zero. After training in this setting we obtain
the usual edge detectors (see Figure (3a)) except for the first component which learns the mean. In
the first setting the result is simply a set of edge detectors. Experimentally, explicitly removing the
mean before training is better as the training converges a lot more quickly.

3.3 Locally connected net

In this section we impose a structure motivated by the connectivity of cortical layer V1. The cortical
layer has a two dimensional structure (with depth) with locations corresponding to the locations in
the input image. The sublayer 4 contains simple cells with edge like receptive fields. Each such
cell receives input from a small neighborhood of the input image at its corresponding location. We
model this by placing units in a two dimensional grid above the image and connecting each unit to
a small neighborhood of the input, Figure 1. We also bind connections weights for units that are
far enough from each other to reduce the number of parameters without affecting the local structure
(Gregor and LeCun, 2010). Next we connect each unit by inhibitory interactions (the S matrix) to
units in its ring-shaped neighborhood: there is a connection between two units if their distance d

6

Figure 3: (a) Filters learned on the original unprocessed image patches. The S matrix was fully
connected except the unit corresponding to the upper left corner which was not connected to any
other unit and learned the mean. The other units typically learned edge detectors. (b) Filters learned
in the tree structure. The Sij = 0 if one of the i and j is descendant of the other and Sij = S0d(i, j)
otherwise where d(i, j) is the distance between the units in the tree. The filters in a given branch are
of a similar orientation and get refined as we walk down the tree.

Figure 4: (a-b) Filters learned on images in the locally connected framework with local inhibition
shown in the Figure 1. The local inhibition matrix has positive value Sij = S0 > 0 if the distance
between code units Zi and Zj satisfies r1 < d(i, j) < r2 and Sij = 0 otherwise. The input size
was 40× 40 pixels and the receptive field size was 10× 10 pixels. The net learned to place filters of
similar orientations close together. (a) Images were preprocessed by subtracting the local mean and
dividing by the standard deviation, each of width 1.65 pixels. The resulting filters are sharp edge
detectors and can therefore be naturally imbedded in two dimensions. (b) Only the local mean, of
width 5 pixels, was subtracted. This results in a larger range of frequencies that is harder to imbed
in two dimensions. (c-d) Filters trained on 10 × 10 image patches with mean subtracted and then
normalized. (c) The inhibition matrix was the same as in (a-b). (d) This time there was an l1 penalty
on each code unit and the lateral interaction matrix S was excitatory: Sij < 0 if d(i, j) < r2 and
zero otherwise.

satisfies r1 < d < r2 for some radii r1 and r2 (alternatively we can put r1 = 0 and create excitatory
interactions in a smaller neighborhood). With this arrangement units that turn on simultaneously are
typically either close to each other (within r1) or far from each other (more distant than r2).

Training on image patches results in the filters shown in the Figure figure 4. We see that filters
with similar orientations are placed together as is observed in V1 (and other experiments on group
sparsity, for example (Hyvarinen and Hoyer, 2001)). Here we obtain these patterns by the presence
of inhibitory connections.

3.4 Tree structure

In this experiment we place the units z on a tree and desire that the units that are on for a given
input lie on a single branch of the tree. We define Sij = 0 if i is descendant of j or vice versa and

7

Sij = S0d(i, j) otherwise where S0 > 0 is a constant and d(i, j) is the distance between the nodes
i and j (the number of links it takes to get from one to the other).

We trained (3) on image patches. The model learns to place low frequency filters close to the root
of the tree and as we go down the branches the filters “refine” their parents, Figure 3b.

3.5 A convolutional image parts model

Figure 5: On the left: the dictionary of 16× 16 filters learned by the convolutional model on faces.
On the right: some low energy configurations, generated randomly as in Section 3.5 . Each active
filter has response 1.

We give an example of learning S in a convolutional setting. We use the centered faces from the
faces in the wild dataset, available at http://vis-www.cs.umass.edu/lfw/. From each of
the 13233 images we subsample by a factor of two and pick a random 48 × 48 patch. The 48 × 48
image x is then contrast normalized to x− b ∗ x, where b is a 5× 5 averaging box filter; the images
are collected into the 48× 48× 13233 data set X .

We then train a model minimizing the energy

∑

i

||
20∑

j=1

Wj ∗ zji −Xi||2 + p(z)TSp(z),

β ≥ S ≥ 0, S = ST , |Sj |1 = α.

Here the code vector z is written as a 48 × 48 × 20 feature map. The pooling operator p takes the
average of the absolute value of each 8 × 8 patch on each of the 20 maps, and outputs a vector of
size 6 · 6 · 20 = 720. β is set to 72, and α to .105. Note that these two numbers roughly specify the
number of zeros in the solution of the S problem to be 1600.

The energy is minimized via the batch procedure. The updates for Z are done via coordinate descent
(coordinate descent in the convolutional setting works exactly as before), the updates forW via least
squares, and at each update, S is averaged with .05 of the solution to the linear program in S with
fixed Z and W . W is initialized via random patches from X , and S is initialized as the all ones
matrix, with zeros on the diagonal. In Figure 5 the dictionaryW is displayed.

To visualize the S which is learned, we will try to use it to generate new images. Without any data
to reconstruct the model will collapse to zero, so we will constrain z to have a fixed number of unit
entries, and run a few steps of a greedy search to decide which entries should be on. That is: we
initialize z to have 5 random entries set to one, and the rest zero. At each step, we pick one of the
nonzero entries, set it to zero, and find the new entry of z which is cheapest to set to one, namely,
the minimum of the entries in Sp(z) which are not currently turned on. We repeat this until the
configuration is stable. Some results are displayed in 5.

The interesting thing about this experiment is the fact that no filter ever is allowed to see global
information, except through S. However, even thoughW is blind to anything larger than a 16× 16
patch, through the inhibition of S, the model is able to learn the placement of facial structures and
long edges.

8

http://vis-www.cs.umass.edu/lfw/

References
Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learning algorithm for boltzmann machines*.
Cognitive science, 9(1):147–169.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–
4322.

Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C. (2009). Model-Based Compressive
Sensing.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm with application
to wavelet-based image deblurring. ICASSP’09, pages 693–696.

Druckmann, S. and Chklovskii, D. (2010). Over-complete representations on recurrent neural net-
works can support persistent percepts.

Garrigues, P. and Olshausen, B. (2008). Learning horizontal connections in a sparse coding model
of natural images. Advances in Neural Information Processing Systems, 20:505–512.

Garrigues, P. and Olshausen, B. (2010). Group sparse coding with a laplacian scale mixture prior.
In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and Culotta, A., editors, Advances
in Neural Information Processing Systems 23, pages 676–684.

Gregor, K. and LeCun, Y. (2010). Emergence of Complex-Like Cells in a Temporal Product Network
with Local Receptive Fields. Arxiv preprint arXiv:1006.0448.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79(8):2554.

Huang, J., Zhang, T., and Metaxas, D. N. (2009). Learning with structured sparsity. In ICML,
page 53.

Hyvarinen, A. and Hoyer, P. (2001). A two-layer sparse coding model learns simple and complex
cell receptive fields and topography from natural images. Vision Research, 41(18):2413–2423.

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph lasso. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages
433–440, New York, NY, USA. ACM.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal methods for sparse hierarchi-
cal dictionary learning. In International Conference on Machine Learning (ICML).

Kavukcuoglu, K., Ranzato, M., Fergus, R., and LeCun, Y. (2009). Learning invariant features
through topographic filter maps. In Proc. International Conference on Computer Vision and
Pattern Recognition (CVPR’09). IEEE.

Kim, S. and Xing, E. P. (2010). Tree-guided group lasso for multi-task regression with structured
sparsity. In ICML, pages 543–550.

Li, Y. and Osher, S. (2009). Coordinate descent optimization for l1 minimization with application
to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 3(3):487–503.

Olshausen, B. and Field, D. (1996). Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609.

Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression.
ANNALS OF APPLIED STATISTICS, 2:224.

9

