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Abstract

We consider regularized risk minimization in a large dictionary of Reproducing
kernel Hilbert Spaces (RKHSs) over which the target function has a sparse repre-
sentation. This setting, commonly referred to as Sparse Multiple Kernel Learning
(MKL), may be viewed as the non-parametric extension of group sparsity in linear
models. While the two dominant algorithmic strands of sparselearning, namely
convex relaxations usingl1 norm (e.g., Lasso) and greedy methods (e.g., OMP),
have both been rigorously extended for group sparsity, the sparse MKL literature
has so far mainly adopted the former with mild empirical success. In this paper, we
close this gap by proposing a Group-OMP based framework for sparse MKL. Un-
like l1-MKL, our approach decouples the sparsity regularizer (viaa directl0 con-
straint) from the smoothness regularizer (via RKHS norms),which leads to better
empirical performance and a simpler optimization procedure that only requires a
black-box single-kernel solver. The algorithmic development and empirical stud-
ies are complemented by theoretical analyses in terms of Rademacher generaliza-
tion bounds and sparse recovery conditions analogous to those for OMP [27] and
Group-OMP [16].

1 Introduction

Kernel methods are widely used to address a variety of learning problems including classification, re-
gression, structured prediction, data fusion, clusteringand dimensionality reduction [22, 23]. How-
ever, choosing an appropriate kernel and tuning the corresponding hyper-parameters can be highly
challenging, especially when little is known about the taskat hand. In addition, many modern prob-
lems involve multiple heterogeneous data sources (e.g. gene functional classification, prediction of
protein-protein interactions) each necessitating the useof a different kernel. This strongly suggests
avoiding the risks and limitations of single kernel selection by considering flexible combinations of
multiple kernels. Furthermore, it is appealing to impose sparsity to discard noisy data sources. As
several papers have provided evidence in favor of using multiple kernels (e.g. [19, 14, 7]), the mul-
tiple kernel learning problem (MKL) has generated a large body of recent work [13, 5, 24, 33], and
become the focal point of the intersection between non-parametric function estimation and sparse
learning methods traditionally explored in linear settings.

Given a convex loss function, the MKL problem is usually formulated as the minimization of em-
pirical risk together with a mixed norm regularizer, e.g., the square of the sum of individual RKHS
norms, or variants thereof, that have a close relationship to the Group Lasso criterion [30, 2]. Equiv-
alently, this formulation may be viewed as simultaneous optimization of both the non-negative con-
vex combination of kernels, as well as prediction functionsinduced by this combined kernel. In
constraining the combination of kernels, thel1 penalty is of particular interest as it encourages spar-
sity in the supporting kernels, which is highly desirable when the number of kernels considered is
large. The MKL literature has rapidly evolved along two directions: one concerns scalability of op-
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timization algorithms beyond the early pioneering proposals based on Semi-definite programming
or Second-order Cone programming [13, 5] to simpler and moreefficient alternating optimization
schemes [20, 29, 24]; while the other concerns the use oflp norms [10, 29] to construct complex
non-sparse kernel combinations with the goal of outperforming 1-norm MKL which, as reported in
several papers, has demonstrated mild success in practicalapplications.

The class of Orthogonal Matching Pursuit techniques has recently received considerable attention, as
a competitive alternative to Lasso. The basic OMP algorithmoriginates from the signal-processing
community and is similar to forward greedy feature selection, except that it performs re-estimation
of the model parameters in each iteration, which has been shown to contribute to improved accuracy.
For linear models, some strong theoretical performance guarantees and empirical support have been
provided for OMP [31] and its extension for variable group selection, Group-OMP [16]. In particular
it was shown in [25, 9] that OMP and Lasso exhibit competitivetheoretical performance guarantees.
It is therefore desirable to investigate the use of MatchingPursuit techniques in the MKL framework
and whether one may be able to improve upon existing MKL methods.

Our contributions in this paper are as follows. We propose a non-parametric kernel-based extension
to Group-OMP [16]. In terms of the feature space (as opposed to function space) perspective of
kernel methods, this allows Group-OMP to handle groups thatcan potentially contain infinite fea-
tures. By adding regularization in Group-OMP, we allow it tohandle settings where the sample size
might be smaller than the number of features in any group. Rather than imposing a mixedl1/RKHS-
norm regularizer as in group-Lasso based MKL, a group-OMP based approach allows us to consider
the exact sparse kernel selection problem vial0 regularization instead. Note that in contrast to the
group-lasso penalty, thel0 penalty by itself has no effect on the smoothness of each individual com-
ponent. This allows for a clear decoupling between the role of the smoothness regularizer (namely,
an RKHS regularizer) and the sparsity regularizer (via thel0 penalty). Our greedy algorithms allow
for simple and flexible optimization schemes that only require a black-box solver for standard learn-
ing algorithms. In this paper, we focus on multiple kernel learning with Regularized least squares
(RLS). We provide a bound on the Rademacher complexity of thehypothesis sets considered by
our formulation. We derive conditions analogous to OMP [27]and Group-OMP [16] to guarantee
the “correctness” of kernel selection. We close this paper with empirical studies on simulated and
real-world datasets that confirm the value of our methods.

2 Learning Over an RKHS Dictionary

In this section, we setup some notation and give a brief background before introducing our main
objective function and describing our algorithm in the nextsection. LetH1 . . .HN be a collection
of Reproducing Kernel Hilbert Spaces with associated Kernel functionsk1 . . . kN defined on the
input spaceX ⊂ R

d. LetH denote the sum space of functions,

H = H1 ⊕H2 . . .⊕HN = {f : X 7→ R|f(x) =
N
∑

j=1

fj(x),x ∈ X , fj ∈ Hj , j = 1 . . . N}

Let us equip this space with the followinglp norms,

‖f‖lp(H) = inf















N
∑

j=1

‖fj‖pHj





1
p

: f(x) =

N
∑

j=1

fj(x),x ∈ X , fj ∈ Hj , j = 1 . . . N











(1)

It is now natural to consider a regularized risk minimization problem over such a RKHS dictionary,
given a collection of training examples{xi, yi}li=1,

argmin
f∈H

1

l

l
∑

i=1

V (yi, f(xi)) + λ‖f‖2lp(H) (2)

whereV (·, ·) is a convex loss function such as squared loss in the Regularized Least Squares (RLS)
algorithm or the hinge loss in the SVM method. If this problemagain has elements of an RKHS
structure, then, via the Representer Theorem, it can again be reduced to a finite dimensional problem
and efficiently solved.
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Let q = p
2−p and let us define theq-convex hull of the set of kernel functions to be the following,

coq(k1 . . . kN ) =







kγ : X × X 7→ R | kγ(x, z) =
N
∑

j=1

γjkj(x, z),

N
∑

j=1

γq
j = 1, γj ≥ 0







whereγ ∈ R
N . It is easy to see that the non-negative combination of kernels, kγ , is itself a valid

kernel with an associated RKHSHkγ
. With this definition, [17] show the following,

‖f‖lp(H) = inf
γ

{

‖f‖Hkγ
, kγ ∈ coq(k1 . . . kN )

}

(3)

This relationship connects Tikhonov regularization withlp norms overH to regularization over
RKHSs parameterized by the kernel functionskγ . This leads to a large family of “multiple kernel
learning” algorithms (whose variants are also sometimes referred to aslq-MKL) where the basic
idea is to solve an equivalent problem,

argmin
f∈Hkγ

,γ∈△q

1

l

l
∑

i=1

V (yi, f(xi)) + λ‖f‖2Hkγ

(4)

where△q = {γ ∈ R
N : ‖γ‖q = 1, ∀nj=1γj ≥ 0}. For a fixedγ, the optimization overf ∈ Hkγ

is
recognizable as an RKHS problem for which a standard black box solver may be used. The weights
γ may then optimized in an alternating minimization scheme, although several other optimization
procedures are also be used (see e.g., [4]). The case wherep = 1 is of particular interest in
the setting when the size of the RKHS dictionary is large but the unknown target function can be
approximated in a much smaller number of RKHSs. This leads toa large family of sparse multiple
kernel learning algorithms that have a strong connection tothe Group Lasso [2, 20, 29].

3 Multiple Kernel Learning with Group Orthogonal Matching Purs uit

Let us recall thel0 pseudo-norm, which is the cardinality of the sparsest representation off in the
dictionary,‖f‖l0(H) = min{|J | : f =

∑

j∈J fj}. We now pose the following exact sparse kernel
selection problem,

argmin
f∈H

1

l

l
∑

i=1

V (yi, f(xi)) + λ‖f‖2l2(H) subject to ‖f‖l0(H) ≤ s (5)

It is important to note the following: when using a dictionary of universal kernels, e.g., Gaussian
kernels with different bandwidths, the presence of the regularization term‖f‖2l2(H) is critical (i.e.,
λ > 0) since otherwise the labeled data can be perfectly fit by any single kernel. In other words, the
kernel selection problem is ill-posed. While conceptually simple, our formulation is quite different
from those proposed earlier since the role of a smoothness regularizer (via the‖f‖2l2(H) penalty) is
decoupled from the role of a sparsity regularizer (via the constraint on‖f‖l0(H) ≤ s). Moreover, the
latter is imposed directly as opposed through ap = 1 penalty making the spirit of our approach closer
to Group Orthogonal Matching Pursuit (Group-OMP [16]) where groups are formed by very high-
dimensional (infinite for Gaussian kernels) feature spacesassociated with the kernels. It has been
observed in recent work [10, 29] onl1-MKL that sparsity alone does not lead it to improvements in
real-world empirical tasks and hence several methods have been proposed to explorelq-norm MKL
with q > 1 in Eqn. 4, making MKL depart away from sparsity in kernel combinations. By contrast,
we note that asq → ∞, p → 2. Our approach gives a direct knobboth on smoothness (viaλ)
and sparsity (vias) with a solution path along these dimensions that differs from that offered by
Group-Lasso basedlq-MKL as q is varied. By combiningl0 pseudo-norm with RKHS norms, our
method is conceptually reminiscent of the elastic net [32] (also see [26, 12, 21]). If kernels arise
from different subsets of input variables, our approach is also related to sparse additive models [18].

Our algorithm, MKL-GOMP, is outlined below for regularizedleast squares. Extensions for other
loss functions, e.g., hinge loss for SVMs, can also be similarly derived. In the description of the algo-
rithm, our notation is as follows: For any functionf belonging to an RKHSFk with kernel function
k(·, ·), we denote the regularized objective function as,Rλ(f,y) =

1
l

∑l
i=1(yi−f(xi))

2+λ‖f‖Fk

3



where‖ · ‖F denotes the RKHS norm. Recall that the minimizerf⋆ = argminf∈F Rλ(f,y) is
given by solving the linear system,α = (K + λlI)−1y whereK is the gram matrix of the ker-
nel on the labeled data, and by settingf⋆(x) =

∑l
i=1 αik(x,xi). Moreover, the objective value

achieved by the minimizer is:Rλ(f
⋆,y) = λyT (K + λlI)−1y. Note that MKL-GOMP should

not be confused with Kernel Matching Pursuit [28] whose goalis different: it is designed to spar-
sify α in a single-kernel setting. The MKL-GOMP procedure iteratively expands the hypothesis
space,HG(1) ⊆ HG(2) . . . ⊆ HG(i) , by greedily selecting kernels from a given dictionary, where
G(i) ⊂ {1 . . . N} is a subset of indices andHG =

⋃

j∈G Hj . Note that eachHG is an RKHS with

kernel
∑

j∈G kj (see Section 6 in [1]). The selection criteria is the best improvement,I(f (i),Hj),

given by a new hypothesis spaceHj in reducing the norm of the current residualr(i) = y − f (i)

wheref (i) = [f (i)(x1) . . . f
(i)(xl)]

T , by finding the best regularized (smooth) approximation. Note
that sinceming∈Hj

Rλ(g, r) ≤ Rλ(0, r) = ‖r‖2, the value of the improvement function,

I(f (i),Hj) = ‖r(i)‖22 − min
g∈Hj

Rλ(g, r
(i))

is always non-negative. Once a kernel is selected, the function is re-estimated by learning inHG(i) .
Note that sinceHG is an RKHS whose kernel function is the sum

∑

j∈G kj , we can use a simple
RLS linear system solver for refitting. Unlike group-Lasso based MKL, we do not need an iterative
kernel reweighting step which essentially arises as a mechanism to transform the less convenient
group sparsity norms into reweighted squared RKHS norms. MKL-GOMP converges when the best
improvement is no better thanǫ.

◮ Input: Data matrixX = [x1 . . .xl]
T , Label vectory ∈ R

l,
Kernel Dictionary{kj(·, ·)}Nj=1, Precisionǫ > 0

◮ Output: Selected KernelsG(i) and a functionf (i) ∈ HG(i)

◮ Initialization: G(0) = ∅, f (0) = 0, set residualr(0) = y

◮ for i = 0, 1, 2, ...

1. Kernel Selection: For all j /∈ G(i), set:
I(f (i),Hj) = ‖r(i)‖22 −ming∈Hj

Rλ(g, r
(i))

= r(i)T
(

I− λ(Kj + λlI)−1
)

r(i)

Pick j(i) = argmaxj /∈G(i) I(f (i),Hj)

2. Convergence Check: if
(

I(f (i),Hj(i)) ≤ ǫ
)

break

3. Refitting: SetG(i+1) = G(i)
⋃{j(i)}. Setf (i+1)(x) =

∑l
j=1 αjk(x,xj)

wherek =
∑

j∈G(i+1) kj andα =
(

∑

j∈G(i+1) Kj + λlI
)−1

y

4. Update Residual: r(i+1) = y − f (i+1) wheref (i+1) = [f (i+1)(x1) . . . f
(i+1)(xl)]

T .

end

Remarks: Note that our algorithm can be applied to multivariate problems with group structure
among outputs similar to Multivariate Group-OMP [15]. In particular, in our experiments on mul-
ticlass datasets, we treat all outputs as a single group and evaluate each kernel for selection based
on how well the total residual is reduced across all outputs simultaneously. Kernel matrices are nor-
malized to unit trace or to have uniform variance of data points in their associated feature spaces, as
in [10, 33]. In practice, we can also monitor error on a validation set to decide the optimal degree
of sparsity. For efficiency, we can precompute the matricesQj = (I − λ(Kj + λlI)−1)

1
2 so that

I(f (i),Hj) = ‖Qjr‖22 can be very quickly evaluated at selection time, and/or reduce the search
space by considering a random subsample of the dictionary.

4 Theoretical Analysis

Our analysis is composed of two parts. In the first part, we establish generalization bounds for
the hypothesis spaces considered by our formulation, basedon the notion of Rademacher complex-
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ity. The second component of our theoretical analysis consists of deriving conditions under which
MKL-GOMP can recover good solutions. While the first part can be seen as characterizing the
“statistical convergence” of our method, the second part characterizes its “numerical convergence”
as an optimization method, and is required to complement thefirst part. This is because matching
pursuit methods can be deemed to solve an exact sparse problem approximately, while regularized
methods (e.g.l1 norm MKL) solve an approximate problem exactly. We therefore need to show that
MKL-GOMP recovers a solution that is close to an optimum solution of the exact sparse problem.

4.1 Rademacher Bounds

Theorem 1. Consider the hypothesis space of sufficiently sparse and smooth functions1,

Hτ,s =
{

f ∈ H : ‖f‖2l2(H) ≤ τ, ‖f‖l0(H) ≤ s
}

Let δ ∈ (0, 1) andκ = supx∈X ,j=1...N kj(x,x). Letρ be any probability distribution on(x, y) ∈
X × R satisfying|y| ≤ M almost surely, and let{xi, yi}li=1 be randomly sampled according to
ρ. Define,f̂ = argminf∈Hτ,s

1
l

∑l
i=1 (yi − f(xi))

2 to be the empirical risk minimizer andf⋆ =

argminf∈Hτ,s
R(f) to be the true risk minimizer inHτ,s whereR(f) = E(x,y)∼ρ (y − f(x))

2

denotes the true risk. Then, with probability atleast1− δ over random draws of samples of sizel,

R(f̂) ≤ R(f⋆) + 8L

√

sκτ

l
+ 4L2

√

log( 3δ )

2l
(6)

where‖y − f‖∞ ≤ L = (M +
√
sκτ).

The proof is given in supplementary material, but can also bereasoned as follows. In the standard
single-RKHS case, the Rademacher complexity can be upper bounded by a quantity that is propor-
tional to the square root of the trace of the Gram matrix, which is further upper bounded by

√
lκ.

In our case, any collection ofs-sparse functions from a dictionary ofN RKHSs reduces to a single
RKHS whose kernel is the sum ofs base kernels, and hence the corresponding trace can be bounded
by

√
lsκ for all possible subsets of sizes. Once it is established that the empirical Rademacher

complexity ofHλ,s is upper bounded by
√

sκτ
l , the generalization bound follows from well-known

results [6] tailored to regularized least squares regression with bounded target variable.

For l1-norm MKL, in the context of margin-based loss functions, Cortes et. al., 2010 [8] bound

the Rademacher complexity as
√

ce⌈log(N)⌉κτ
l where⌈·⌉ is the ceiling function that rounds to next

integer,e is the exponential andc = 23
22 . Using VC-based lower-bound arguments, they point

out that the
√

log(N) dependence onN is essentially optimal. By contrast, our greedy approach
with sequential regularized risk minimization imposes direct control over degree of sparsity as well
as smoothness, and hence the Rademacher complexity in our case is independent ofN . If s =
O(logN), the bounds are similar. A critical difference betweenl1-norm MKL and sparse greedy
approximations, however, is that the former is convex and hence the empirical risk can be minimized
exactly in the hypothesis space whose complexity is boundedby Rademacher analysis. This is not
true in our case, and therefore, to complement Rademacher analysis, we need conditions under
which good solutions can be recovered.

4.2 Exact Recovery Conditions in Noiseless Settings

We now assume that the regression functionfρ(x) =
∫

ydρ(y|x) is sparse, i.e.,fρ ∈ HGgood
for

some subsetGgood of s “good” kernels and that it is sufficiently smooth in the sensethat for some
λ > 0, given sufficient samples, the empirical minimizerf̂ = argminf∈HGgood

Rλ(f,y) gives near

optimal generalization as per Theorem 1. In this section ourmain concern is to characterize Group-
OMP like conditions under which MKL-GOMP will be able to learn f̂ by recovering the support
Ggood exactly.

1Note that Tikhonov regularization using a penalty termλ‖ · ‖2, and Ivanov Regularization which uses a
ball constraint‖ · ‖2 ≤ τ return identical solutions for some one-to-one correspondence betweenλ andτ .
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Let us denoter(i) = f̂ − f (i) as theresidual functionat stepi of the algorithm. Initially,
r(0) = f̂ ∈ HGgood

. Our argument is inductive: if at any stepi, r(i) ∈ HGgood
and we can

always guarantee thatmaxj∈Ggood
I(f (i),Hj) > maxj /∈Ggood

I(f (i),Hj), i.e., a good kernel of-
fers better greedy improvement, then it is clear that the algorithm correctly expands the hypothesis
space and never makes a mistake. Without loss of generality,let us rearrange the dictionary so that
Ggood = {1 . . . s}. For any functionf ∈ HGgood

, we now wish to derive the following upper bound,

‖(I(f,Hs+1) . . . I(f,HN ))‖∞
‖(I(f,H1) . . . I(f,Hs))‖∞

≤ µH(Ggood)
2 (7)

Clearly, a sufficient condition for exact recovery isµH(Ggood) < 1.

We need some notation to state our main result. Lets = |Ggood|, i.e., the number of good kernels.
For any matrixA ∈ R

ls×l(N−s), let ‖A‖(2,1) denote the matrix norm induced by the following
vector norms: for any vectoru = [u1 . . .us] ∈ R

ls define‖u‖(2,1) =
∑s

i=1 ‖ui‖2; and similarly,

for any vectorv = [v1 . . .vN−s] ∈ R
l(N−s) define‖v‖(2,1) =

∑N−s
i=1 ‖vi‖2. Then,‖A‖(2,1) =

sup
v∈Rl(N−s)

‖Av‖(2,1)

‖v‖(2,1)
. We can now state the following:

Theorem 2. Given the kernel dictionary{kj(·, ·)}Nj=1 with associated gram matrices{Kj}Ni=1 over

the labeled data, MKL-GOMP correctly recovers the good kernels, i.e.,G(s) = Ggood, if

µH(Ggood) = ‖Cλ,H(Ggood)‖(2,1) < 1

whereCλ,H(Ggood) ∈ R
ls×l(N−s) is a coherence matrix whose(i, j)th block of sizel × l, i ∈

Ggood, j /∈ Ggood, is given by,

Cλ,H(Ggood)i,j = KGgood
Qi





∑

k∈Ggood

QkK
2
Ggood

Qk





−1

QjKGgood
(8)

whereKGgood
=

∑

j∈Ggood
Kj , Qj = (I− λ(Kj + λlI)−1)

1
2 , j = 1 . . . N .

The proof is given in supplementary material. This result isanalogous to sparse recovery conditions
for OMP andl1 methods and their (linear) group counterparts. In the noiseless setting, Tropp [27]
gives an exact recovery condition of the form‖X†

goodXbad‖1 < 1, whereXgood andXbad refer
to the restriction of the data matrix to good and bad features, and‖ · ‖1 refers to thel1 induced
matrix norm. Intriguingly, the same paper shows that this condition is also sufficient for the Basis
Pursuitl1 minimization problem. For Group-OMP [16], the condition generalizes to involve a group
sensitive matrix norm on the same matrix objects. Likewise,Bach [2] generalizes the Lasso variable
selection consistency conditions to apply to Group Lasso and then further to non-parametricl1-
MKL. The above result is similar in spirit. A stronger sufficient condition can be derived by requiring
‖QjKGgood

‖2 to be sufficiently small for allj /∈ Ggood. Intuitively, this means that smooth functions
in HGgood

cannot be well approximated by using smooth functions induced by the “bad” kernels, so
that MKL-GOMP is never led to making a mistake.

5 Empirical Studies

We report empirical results on a collection of simulated datasets and3 classification problems from
computational cell biology. In all experiments, as in [10, 33], candidate kernels are normalized
multiplicatively to have uniform variance of data points intheir associated feature spaces.

5.1 Adaptability to Data Sparsity - Simulated Setting

We adapt the experimental setting proposed by [10] where thesparsity of the target function is ex-
plicitly controlled, and the optimal subset of kernels is varied from requiring the entire dictionary to
requiring a single kernel. Our goal is to study the solution paths offered by MKL-GOMP in compar-
ison tolq-norm MKL. For consistency, we use squared loss in all experiments2. We implemented

2
lq-MKL with SVM hinge loss behaves similarly.
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Figure 1: Simulated Setting: Adaptability to Data Sparsity
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lq-norm MKL for regularized least squares (RLS) using an alternating minimization scheme adapted
from [17, 29]. Different binary classification datasets3 with 50 labeled examples are randomly gen-
erated by sampling the two classes from 50-dimensional isotropic Gaussian distributions with equal
covariance matrices (identity) and equal but opposite, meansµ1 = 1.75 θ

‖θ‖ andµ2 = −µ1 whereθ
is a binary vector encoding the true underlying sparsity. The fraction of zero components inθ is a
measure for the feature sparsity of the learning problem. For each dataset, a linear kernel (normal-
ized as in [10]) is generated from each feature and the resulting dictionary is input to MKL-GOMP
andlq-norm MKL. For each level of sparsity, a training of size 50, validation and test sets of size
10000 are generated10 times and average classification errors are reported. For each run, the vali-
dation error is monitored as kernel selection progresses inMKL-GOMP and the number of kernels
with smallest validation error are chosen. The regularization parameters for both MKL-GOMP and
lq norm MKL are similarly chosen using the validation set. Figure 5.1 shows test error rates as a
function of sparsity of the target function: from non-sparse (all kernels needed) to extremely sparse
(only 1 kernel needed). We recover the observations also made in [10]: l1-norm MKL excels in
extremely sparse settings where a single kernel carries thewhole discriminative information of the
learning problem. However, in the other scenarios it mostlyperforms worse than the otherq > 1
variants, despite the fact that the vectorθ remains sparse in all but the uniform scenario. Asq is
increased, the error rate in these settings improves but deteriorates in sparse settings. As reported
in [11], the elastic net MKL approach of [26] performs similar to l1-MKL in the hinge loss case.
As can be seen in the Figure, the error curve of MKL-GOMP tendsto be below the lower envelope
of the error rates given bylq-MKL solutions. To adapt to the sparsity of the problem,lq methods
clearly need to tuneq requiring several fresh invocations of the appropriatelq-MKL solver. On the
other hand, in MKL-GOMP the hypothesis space grows as function of the iteration number and the
solution trajectory naturally expands sequentially in thedirection of decreasing sparsity. The right
plot in Figure 5.1 shows the number of kernels selected by MKL-GOMP and the optimal value of
λ, suggesting that MKL-GOMP adapts to the sparsity and smoothness of the learning problem.

5.2 Protein Subcellular Localization

The multiclass generalization ofl1-MKL proposed in [33] (MCMKL) is state of the art methodology
in predicting protein subcellular localization, an important cell biology problem that concerns the
estimation of where a protein resides in a cell so that, for example, the identification of drug targets
can be aided. We use three multiclass datasets:PSORT+, PSORT- andPLANT provided by the au-
thors of [33] athttp://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc
together with a dictionary of69 kernels derived with biological insight:2 kernels on phylogenetic
trees,3 kernels based on similarity to known proteins (BLAST E-values), and64 kernels based
on amino-acid sequence patterns. The statistics of the three datasets are as follows:PSORT+ has
541 proteins labeled with4 location classes,PSORT- has1444 proteins in5 classes andPLANT is

3Provided by the authors of [10] atmldata.org/repository/data/viewslug/mkl-toy/
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Figure 2: Protein Subcellular Localization Results

a 4-class problem with 940 proteins. For each dataset, resultsare averaged over 10 splits of the
dataset into training and test sets. We used exactly the sameexperimental protocol, data splits and
evaluation methodology as given in [33]: the hyper-parameters of MKL-GOMP (sparsity and the
regularization parameterλ) were tuned based on 3-fold cross-validation; results onPSORT+, PSORT-
are F1-scores averaged over the classes while those onPLANT are Mathew’s correlation coefficient4.
Figure 2 compare MKL-GOMP against MCMKL, baselines such as using the sum of all the kernels
and using the best single kernel, and results from other prediction systems proposed in the literature.
As can be seen, MKL-GOMP slightly outperforms MCMKL onPSORT+ an PSORT- datasets and
is slightly worse onPLANT where RLS with the sum of all the kernels also performs very well.
On the twoPSORTdatasets, [33] report selecting25 kernels using MCMKL. On the other hand, on
average, MKL-GOMP selects14 kernels onPSORT+, 15 on PSORT- and24 kernels onPLANT. Note
that MKL-GOMP is applied in multivariate mode: the kernels are selected based on their utility to
reduce the total residual error across all target classes.

6 Conclusion

By proposing a Group-OMP based framework for sparse multiple kernel learning, analyzing theoret-
ically the performance of the resulting methods in relationto the dominant convex relaxation-based
approach, and demonstrating the value of our framework through extensive experimental studies,
we believe greedy methods arise as a natural alternative fortackling MKL problems. Relevant
directions for future research include extending our theoretical analysis to the stochastic setting,
investigating complex multivariate structures and groupings over outputs, e.g., by generalizing the
multivariate version of Group-OMP [15], and extending our algorithm to incorporate interesting
structured kernel dictionaries [3].
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