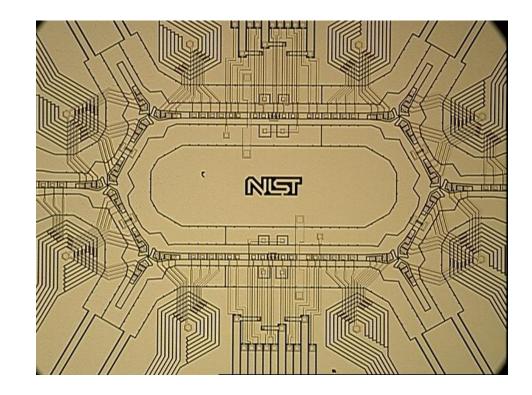
Universal low-rank matrix recovery from Pauli measurements


Yi-Kai Liu

Applied and Computational Mathematics Division US National Institute of Standards and Technology

Motivation: experiments with complex quantum systems

Ion traps

- Small quantum computers
- Precision metrology
- Simulating chemical dynamics
- Want to scale up: 10 to 100 qubits

Quantum state tomography

- Characterizing an unknown quantum state: want to learn the *density matrix* ρ in C^{dxd}
 - For a state of n qubits, d = 2ⁿ => pretty big!
 - In many cases, ρ has rank r << d</p>
- Choose measurement matrices P₁, P₂, ...
- Observe $Tr(P_1\rho)$, $Tr(P_2\rho)$, ...
 - Use Pauli matrices matrix analogue of Fourier basis
 - Use compressed sensing techniques!

Our results

- There is a <u>universal</u> set of O(rd log⁶d) Pauli measurements, that can be used to reconstruct any rank-r state ρ in C^{dxd}
 - Choose random Pauli matrices, use the matrix Lasso
 - Get strong (near-optimal) error bounds [CP'11]
- Random Pauli measurements obey the restricted isometry property (RIP)
 - Embed the manifold of low-rank matrices into O(rd log⁶d) dimensions
 - More structured, less random than a Gaussian random projection