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Abstract

Although spectral clustering has enjoyed considerable empirical success in ma-
chine learning, its theoretical properties are not yet fully developed. We analyze
the performance of a spectral algorithm for hierarchical clustering and show that
on a class of hierarchically structured similarity matrices, this algorithm can toler-
ate noise that grows with the number of data points while still perfectly recovering
the hierarchical clusters with high probability. We additionally improve upon pre-
vious results for k-way spectral clustering to derive conditions under which spec-
tral clustering makes no mistakes. Further, using minimax analysis, we derive
tight upper and lower bounds for the clustering problem and compare the perfor-
mance of spectral clustering to these information theoretic limits. We also present
experiments on simulated and real world data illustrating our results.

1 Introduction

Clustering, a fundamental and ubiquitous problem in machine learning, is the task of organizing data
points into homogenous groups using a given measure of similarity. Two popular forms of clustering
are k-way, where an algorithm directly partitions the data into %k disjoint sets, and hierarchical,
where the algorithm organizes the data into a hierarchy of groups. Popular algorithms for the k-way
problem include k-means, spectral clustering, and density-based clustering, while agglomerative
methods that merge clusters from the bottom up are popular for the latter problem.

Spectral clustering algorithms embed the data points by projection onto a few eigenvectors of (some
form of) the graph Laplacian matrix and use this spectral embedding to find a clustering. This
technique has been shown to work on various arbitrarily shaped clusters and, in addition to being
straightforward to implement, often outperforms traditional clustering algorithms such as the k-
means algorithm.

Real world data is inevitably corrupted by noise and it is of interest to study the robustness of spectral
clustering algorithms. This is the focus of our paper.

Our main contributions are:

e We leverage results from perturbation theory in a novel analysis of a spectral algorithm
for hierarchical clustering to understand its behavior in the presence of noise. We provide
strong guarantees on its correctness; in particular, we show that the amount of noise spectral
clustering tolerates can grow rapidly with the size of the smallest cluster we want to resolve.

e We sharpen existing results on k-way spectral clustering. In contrast with earlier work, we
provide precise error bounds through a careful characterization of a k-means style algo-
rithm run on the spectral embedding of the data.

e We also address the issue of optimal noise thresholds via the use of minimax theory. In
particular, we establish tight information-theoretic upper and lower bounds for cluster re-
solvability.



2 Related Work and Definitions

There are several high-level justifications for the success of spectral clustering. The algorithm has
deep connections to various graph-cut problems, random walks on graphs, electric network theory,
and via the graph Laplacian to the Laplace-Beltrami operator. See [16] for an overview.

Several authors (see von Luxburg et. al. [17] and references therein) have shown various forms of
asymptotic convergence for the Laplacian of a graph constructed from random samples drawn from
a distribution on or near a manifold. These results however often do not easily translate into precise
guarantees for successful recovery of clusters, which is the emphasis of our work.

There has also been some theoretical work on spectral algorithms for cluster recovery in random
graph models. McSherry [9] studies the “cluster-structured” random graph model in which the
probability of adding an edge can vary depending on the clusters the edge connects. He considers a
specialization of this model, the planted partition model, which specifies only two probabilities, one
for inter-cluster edges and another for intra-cluster edges. In this case, we can view the observed
adjacency matrix as a random perturbation of a low rank “expected” adjacency matrix which en-
codes the cluster membership. McSherry shows that one can recover the clusters from a low rank
approximation of the observed (noisy) adjacency matrix. These results show that low-rank matrices
have spectra that are robust to noise. Our results however, show that we can obtain similar insensi-
tivity (to noise) guarantees for a class of interesting structured full-rank matrices, indicating that this
robustness extends to a much broader class of matrices.

More recently, Rohe et al [11] analyze spectral clustering in the stochastic block model (SBM),
which is an example of a structured random graph. They consider the high-dimensional scenario
where the number of clusters k& grows with the number of data points n and show that under certain
assumptions the average number of mistakes made by spectral clustering — 0 with increasing n.
Our work on hierarchical clustering also has the same high-dimensional flavor since the number of
clusters we resolve grows with n. However, in the hierarchical clustering setting, errors made at the
bottom level propogate up the tree and we need to make precise arguments to ensure that the fotal
number of errors — 0 with increasing n (see Theorem 1).

Since Rohe et al [11] and McSherry [9] consider random graph models, the “noise” on each entry has
bounded variance. We consider more general noise models and study the relation between errors in
clustering and noise variance. Another related line of work is on the problem of spectrally separating
mixtures of Gaussians [1, 2, 8].

Ng et al. [10] study k-way clustering and show that the eigenvectors of the graph Laplacian are stable
in 2-norm under small perturbations. This justifies the use of k-means in the perturbed subspace
since ideally without noise, the spectral embedding by the top k eigenvectors of the graph Laplacian
reflects the true cluster memberships, However, closeness in 2-norm does not translate into a strong
bound on the total number of errors made by spectral clustering.

Huang et al. [7] study the misclustering rate of spectral clustering under the somewhat unnatural
assumption that every coordinate of the Laplacian’s eigenvectors are perturbed by independent and
identically distributed noise. In contrast, we specify our noise model as an additive perturbation to
the similarity matrix, making no direct assumptions on how this affects the spectrum of the Lapla-
cian. We show that the eigenvectors are stable in co-norm and use this result to precisely bound the
misclustering rate of our algorithm.

2.1 Definitions

The clustering problem can be defined as follows: Given an (n X n) similarity matrix on n data
points, find a set C of subsets of the points such that points belonging to the same subset have
high similarity and points in different subsets have low similarity. Our first results focus on binary
hierarchical clustering, which is formally defined as follows:

Definition 1 A hierarchical clustering T on data points {X;}"_, is a collection of clusters (subsets
of the points) such that Cy := {X;}}'_, € T and for any C;,C; € T, either C; C C;, C; C C;, or
C;NC; = 0. A binary hierarchical clustering T is a hierarchical clustering such that for each non-
atomic Cy, € T, there exists two proper subsets C;,C; € T with C; N C; = 0 and C; U Cj = C,.
We label each cluster by a sequence s of Ls and Rs so that Cs.1, and Cs. g partitions Cs, Cs.11, and
Cs.1 R partititons Cs.1,, and so on.



las.pr:Bsor] | [as.pBs.L]
lasn,Bsn] [ [os. LR Bs LRI [os. Bal

[as.rL:Bs.rL] | [@s.R:Bs.R]
[ecs Bs] las.r,Bs.r] | [@s.RR,Bs RR]

(b)

Figure 1: (a): Two moons data set (Top). For a similarity function defined on the e-neighborhood
graph (Bottom), this data set forms an ideal matrix. (b) An ideal matrix for the hierarchical problem.

Ideally, we would like that at all levels of the hierarchy, points within a cluster are more similar
to each other than to points outside of the cluster. For a suitably chosen similarity function, a
data set consisting of clusters that lie on arbitrary manifolds with complex shapes can result in
this ideal case. As an example, in the two-moons data set in Figure 1(a), the popular technique of
constructing a nearest neighbor graph and defining the distance between two points as the length
of the longest edge on the shortest path between them results in an ideal similarity matrix. Other
non-Euclidean similarity metrics (for instance density based similarity metrics [12]) can also allow
for non-parametric cluster shapes.

For such ideal similarity matrices, we can show that the spectral clustering algorithm will determin-
istically recover all clusters in the hierarchy (see Theorem 5 in the appendix). However, since this
ideal case does not hold in general, we focus on similarity matrices that can be decomposed into an
ideal matrix and a high-variance noise term.

Definition 2 A similarity matrix W is a noisy hierarchical block matrix (noisy HBM) if W & A+R
where A is ideal and R is a perturbation matrix, defined as follows:

o An ideal similarity matrix, shown in Figure 1(b), is characterized by ranges of off-block-
diagonal similarity values [, 5] for each cluster Cs such that if v € Cs.p, and y € Cs.g
then ag < Ayy < Bs. Additionally, min{o,. g, 0s..} > Bs.

o A symmetric (n xn) matrix R is a perturbation matrix with parameter o if (a) E(R;;) = 0,
(b) the entries of R are subgaussian, that is E(exp(tR;;)) < exp(#) and (c) for each
row i, R;1,..., R;, are independent.

The perturbations we consider are quite general and can accommodate bounded (with o upper
bounded by the range), Gaussian (where o is the standard deviation), and several other common
distributions. This model is well-suited to noise that arises from the direct measurement of similar-
ities. It is also possible to assume instead that the measurements of individual data points are noisy
though we do not focus on this case in our paper.

In the k-way case, we consider the following similarity matrix which is studied by Ng et. al [10].

Definition 3 W is a noisy k-Block Diagonal matrix if W £ A + R where R is a perturbation
matrix and A is an ideal matrix for the k-way problem. An ideal matrix for the k-way problem has
within-cluster similarities larger than By > 0 and between cluster similarities 0.

Finally, we define the combinatorial Laplacian matrix, which will be the focus of our spectral algo-
rithm and our subsequent analysis.

Definition 4 The combinatorial Laplacian L of a matrix W is defined as L & D — W where D is
a diagonal matrix with D; = 2?21 Wij.

We note that other analyses of spectral clustering have studied other Laplacian matrices, particularly,
the normalized Laplacians defined as L,, 2 D=L and L,, £ D~z LD~ . However as we show in
Appendix E, the normalized Laplacian can mis-cluster points even for an ideal noiseless similarity
matrix.



Algorithm 1 HS

input (noisy) n x n similarity matrix W
Compute Laplacian L = D — W
v9 <— smallest non-constant eigenvector of L
Cy < {i:v2(i) > 0}, Cy < {j : v2(j) < 0}
C + {C1,C2}UHS (W¢,)U HS (We,)

output C

Figure 2: An ideal matrix and a noisy HBM. Clus-
ters at finer granularity are masked by noise.

Algorithm 2 K-WAY SPECTRAL

input (noisy) n x n similarity matrix W, number of clusters k
Compute Laplacian L = D — W
V «+ (n x k) matrix with columns v, ..., vg, where v; £ jth smallest eigenvector of L
c1 < Vi (the first row of V).
Fori=2...kletc; < argmax;c gy, mingegy,.. -1} Vi — Vel
Fori=1...nsetc(i) =argmin;cgy [|[Vi — Ve, ll2

output C = {{j € {1...n}:c(j) =i}}r,

3 Algorithms and Main Results

In our analysis we study the algorithms for hierarchical and k-way clustering, outlined in Algo-
rithms 1 and 2. Both of these algorithms take a similarity matrix W and compute the eigenvectors
corresponding to the smallest eigenvalues of the Laplacian of 1. The algorithms then run simple
procedures to recover the clustering from the spectral embedding of the data points by these eigen-
vectors. Our Algorithm 2 deviates slightly from the standard practice of running k-means in the
perturbed subspace. We instead use the optimal algorithm for the k-center problem (Hochbaum-
Shmoys [6]) because of its amenability to theoretical analysis. We will in this section outline our
main results; we sketch the proofs in the next section and defer full proofs to the Appendix.

We first state the following general assumptions, which we place on the ideal similarity matrix A:
Assumption 1 Foralli,j, 0 < A;; < 8* for some constant B3*.

Assumption 2 (Balanced clusters) There is a constant ) > 1 such that at every split of the hierarchy

% < n, where |Ciax|, |Cmin| are the sizes of the biggest and smallest clusters respectively.

Assumption 3 (Range Restriction) For every cluster s, min{as.1,, as.g} — Bs > n(Bs — ).

It is important to note that these assumptions are placed only on the ideal matrices. The noisy HBMs
can with high probability violate these assumptions.

We assume that the entries of A are strictly greater than O for technical reasons; we believe, as
confirmed empirically, that this restriction is not necessary for our results to hold. Assumption 2
says that at every level the largest cluster is only a constant fraction larger than the smallest. This
can be relaxed albeit at the cost of a worse rate. For the ideal matrix, the Assumption 3 ensures that
at every level of the hierarchy, the gap between the within-cluster similarities and between-cluster
similarities is larger than the range of between-cluster similarities. Earlier papers [9, 11] assume that
the ideal similarities are constant within a block in which case the assumption is trivially satisfied
by the definition of the ideal matrix. However, more generally this assumption is necessary to show
that the entries of the eigenvector are safely bounded away from zero. If this assumption is violated
by the ideal matrix, then the eigenvector entries can decay as fast as O(1/n) (see Appendix E for
more details), and our analysis shows that such matrices will no longer be robust to noise.

Other analyses of spectral clustering often directly make less interpretable assumptions about the
spectrum. For instance, Ng et al. [10] assume conditions on the eigengap of the normalized Lapla-
cian and this assumption implicitly creates constraints on the entries of the ideal matrix A that can
be hard to make explicit.



To state our theorems concisely we will define an additional quantity 5. Intuitively, v quantifies
how close the ideal matrix comes to violating Assumption 3 over a set of clusters S.

Definition 5 For a set of clusters S, define v £ minges min{as.p, a5 g} — Bs — N(Bs — ).

We, as well as previous works [10, 11], rely on results from perturbation theory to bound the error
in the observed eigenvectors in 2-norm. Using this approach, the straightforward way to analyze
the number of errors is pessimistic since it assumes the difference between the two eigenvectors is
concentrated on a few entries. However, we show that the perturbation is in fact generated by a
random process and thus unlikely to be adversarially concentrated. We formalize this intuition to
uniformly bound the perturbations on every entry and get a stronger guarantee.

We are now ready to state our main result for hierarchical spectral clustering. At a high level, this
result gives conditions on the noise scale factor o under which Algorithm HS will recover all clusters
s € S,,, where S,,, is the set of all clusters of size at least m.

Theorem 1 Suppose that W = A + R is an (n X n) noisy HBM where A satisfies Assumptions 1,
2, and 3. Suppose that the scale factor of R increases at 0 = o (min (K*51 [ foas K IL))
gn ogn

where K* = min (ao, Wg"‘), m > 0 and m = w(logn) Then for all n large enough, with

14+n
probability at least 1 — 6/n, HS , on input M, will exactly recover all clusters of size at least m.

A few remarks are in order:

1. It is impossible to resolve the entire hierarchy, since small clusters can be irrecoverably
buried in noise. The amount of noise that algorithm HS can tolerate is directly dependent
on the size of the smallest cluster we want to resolve.

2. As a consequence of our proof, we show that to resolve only the first level of the hierarchy,
the amount of noise we can tolerate is (pessimistically) o(x*®{/n/logn) which grows
rapidly with n.

3. Under this scaling between n and o, it can be shown that popular agglomerative algorithms
such as single linkage will fail with high probability. We verify this negative result through
experiments (see Section 5).

4. Since we assume that 5* does not grow with n, both the range (3; — «;) and the gap
(min{as.1, as.r} — Bs) must decrease with n and hence that v5 ~must decrease as well.
For example, if we have uniform ranges and gaps across all levels, then 5 = ©(1/logn).

*
* ’Ysm . . * . .
For constant v, for n large enough £* = 5= o We see that in our analysis 5, is a crucial

determinant of the noise tolerance of spectral clustering.

We extend the intuition behind Theorem 1 to the k-way setting. Some arguments are more subtle
since spectral clustering uses the subspace spanned by the k smallest eigenvectors of the Laplacian.
We improve the results of Ng et. al. [10] to provide a coordinate-wise bound on the perturbation of
the subspace, and use this to make precise guarantees for Algorithm K-WAY SPECTRAL.

Theorem 2 Suppose that W = A+ R is an (nxn) noisy k-Block Diagonal matrix where A satisfies

Assumptions 1 and 2. Suppose that the scale factor of R increases at rate o = 0(%"(%)1/ 4.

Then with probability 1 — 8 /n, for all n large enough, K-WAY SPECTRALwill exactly recover the
k clusters.

3.1 Information-Theoretic Limits

Having introduced our analysis for spectral clustering a pertinent question remains. Is the algorithm
optimal in its dependence on the various parameters of the problem?

We establish the minimax rate in the simplest setting of a single binary split and compare it to our
own results on spectral clustering. With the necessary machinery in place, the minimax rate for the
k-way problem follows easily. We derive lower bounds on the problem of correctly identifying two
clusters under the assumption that the clusters are balanced. In particular, we derive conditions on
(n,o,7), i.e. the number of objects, the noise variance and the gap between inter and intra-cluster
similarities, under which any method will make an error in identifying the correct clusters.

lRecall n, = O(bn) and b,, = w(an) if lZmnqufZ =0



Theorem 3 There exists a constant o € (0,1/8) such that if, o > = /#(n) the probability of
« 10, bl

failure of any estimator of the clustering remains bounded away from 0 as n — 0.

Under the conditions of this Theorem ~ and x* coincide, provided the inter-cluster similarities re-
main bounded away from O by at least a constant. As a direct consequence of Theorem 1, spectral

clustering requires o < min (75 \/ 0102(2) v </ 0102(")> (for a large enough constant C').
2 2

Thus, the noise threshold for spectral clustering does not match the lower bound. To establish
that this lower bound is indeed tight, we need to demonstrate a (not necessarily computationally
efficient) procedure that achieves this rate. We analyze a combinatorial procedure that solves the
NP-hard problem of finding the minimum cut of size exactly n/2 by searching over all subsets. This
algorithm is strongly related to spectral clustering with the combinatorial Laplacian, which solves a
relaxation of the balanced minimum cut problem. We prove the following theorem in the appendix.

Theorem 4 There exists a constant C such that if o < /ﬁm the combinatorial procedure
2

described above succeeds with probability at least 1 — % which goes to 0 as n — o0.

This theorem and the lower bound together establish the minimax rate. It however, remains an
open problem to tighten the analysis of spectral clustering in this paper to match this rate. In the
Appendix we modify the analysis of [9] to show that under the added restriction of block constant
ideal similarities there is an efficient algorithm that achieves the minimax rate.

4 Proof Outlines

Here, we present proof sketches of our main theorems, deferring the details to the Appendix.
Qutline of proof of Theorem 1

Let us first restrict our attention toward finding the first split in the hierarchical clustering. Once we
prove that we can recover the first split correctly, we can then recursively apply the same arguments
along with some delicate union bounds to prove that we will recover all large-enough splits of the
hierarchy. To make presentation clearer, we will only focus here on the scaling between 2 and n.
Of course, when we analyze deeper splits, n becomes the size of the sub-cluster.

Let W = A+ R be the n x n noisy HBM. One can readily verify that the Laplacian of W, Ly, can
be decomposed as L4 + Lg. Let v(?), u(?) be the second eigenvector of L 4, Ly respectively.

We first show that the unperturbed v(?) can clearly distinguish the two outermost clusters and that
A1, A2, and A3 (the first, second, and third smallest eigenvalues of Ly respectively), are far away
from each other. More precisely we show |v§2)| = @(ﬁ) for all ¢ = 1,...,n and its sign cor-

responds to the cluster identity of point ¢. Further the eigen-gap, Ao — Ay = A2 = O(n), and
A3 — Ay = ©(n). Now, using the well-known Davis-Kahan perturbation theorem, we can show that

@ _ @, — vnlogn _  [logn
HU Y ||2 O<0min()\2,)\3—)\2) Ol\e n

The most straightforward way of turning this /5-norm bound into uniform-entry-wise [, bound is to
assume that only one coordinate has large perturbation and comprises all of the ls-perturbation. We
perform a much more careful analysis to show that all coordinates uniformly have low perturbation.

Specifically, we show thatif o = O( 4/ 1"%) then with high probability, vl@) —ul@) [loo = O(\/rz)

Combining this and the fact that |1)1(2)| = 6(%), and performing careful comparison with the
leading constants, we can conclude that spectral clustering will correctly recover the first split.

Qutline of proof of Theorem 2

Leveraging our analysis of Theorem 1 we derive an ., bound on the bottom k-eigenvectors. One
potential complication we need to resolve is that the k-Block Diagonal matrix has repeated eigen-
values and more careful subspace perturbation arguments are warranted.
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Figure 3: (a),(b): Threshold curves for the first split in HBMs. Comparison of clustering algorithms
with n = 512, m = 9 (¢), and on simulated phylogeny data (d).

We further propose a different algorithm, K-WAY SPECTRAL, from the standard k-means. The
algorithm carefully chooses cluster centers and then simply assigns each point to its nearest cen-
ter. The /., bound we derive is much stronger than /5 bounds prevalent in the literature and in a
straightforward way provides a no-error guarantee on K-WAY SPECTRAL.

QOutline of proof of Theorem 3

As is typically the case with minimax analysis, we begin by restricting our attention to a small (but
hard to distinguish) class of models, and follow this by the application of Fano’s inequality. Models
are indexed by O(n, 0,7, I1), where I; denotes the indices of the rows (and columns) in the first
cluster. For simplicity, we’ll focus only on models with |I| = n/2.

Since we are interested in the worst case we can make two further simplifications. The ideal (noise-
less) matrix can be taken to be block-constant since the worst case is when the diagonal blocks are
at their lower bound (which we call p) and the off diagonal blocks are at their upper bound (q). We
consider matrices W = A + R, which are (n x n) matrices, with R;; ~ N (0, 0?).

Given the true parameter 6y we choose the following “hard" subset {61, ...,0,,}. We will select
models which mis-cluster only the last object in I3, there are exactly n/2 such models. Our proof
is an application of Fano’s inequality, using the Hamming distance and the KL-divergence between

the true model I; and the estimated model I;. See the appendix for calculations and proof details.

The proof of Theorem 4 follows from a careful union bound argument to show that even amongst
the combinatorially large number of balanced cuts of the graph, the true cut has the lowest weight.

5 Experiments

We evaluate our algorithms and theoretical guarantees on simulated matrices, synthetic phylogenies,
and finally on two real biological datasets. Our experiments focus on the effect of noise on spectral
clustering in comparison with agglomerative methods such as single, average, and complete linkage.

5.1 Threshold Behavior

One of our primary interests is to empirically validate the relation between the scale factor o and
the sample size n derived in our theorems. For a range of scale factors and noisy HBMs of varying
size, we empirically compute the probability with which spectral clustering recovers the first split
of the hierarchy. From the probability of success curves (Figure 3(a)), we can conclude that spectral
clustering can tolerate noise that grows with the size of the clusters.

We further verify the dependence between o and n for recovering the first split. For the first split we
observe that when we rescale the x-axis of the curves in Figure 3(a) by y/log(n)/n the curves line
up for different n. This shows that empirically, at least for the first split, spectral clustering appears
to achieve the minimax rate for the problem.

5.2 Simulations

We compare spectral clustering to several agglomerative methods on two forms of synthetic data:
noisy HBMs and simulated phylogenetic data. In these simulations, we exploit knowledge of the
true reference tree to quantitatively evaluate each algorithm’s output as the fraction of triplets of
leaves for which the most similar pair in the output tree matches that of the reference tree. One can
verify that a tree has a score of 1 if and only if it is identical to the reference tree.

Initially, we explore how HS compares to agglomerative algorithms on large noisy HBMs. In Fig-
ure 3(c), we compare performance, as measured by the triplets metric, of four clustering algorithms
(HS ., and single, average, and complete linkage) with n = 512 and m = 9. We also evaluate



[ Dataset [ HS | Agglomerative |

Gene (n = 2048) 0.0775 0.0203

Gene (n = 1024) 0.1006 0.0312

Gene (n = 512) 0.0785 0.0280

Phylogeny (I = 100) | 0.0067 0.0063

Phylogeny (I =200) | 0.0066 0.0069

Phylogeny (I =300) | 0.0066 0.0060
(b)

Figure 4: Experiments with real world data. (a): Heatmaps of single linkage (left) and HS (right)
on gene expression data with n = 2048. (b) A-entropy scores on real world data sets.

HS and single linkage as applied to reconstructing phylogenetic trees from genetic sequences. In
Figure 3(d), we plot accuracy, again measured using the triplets metric, of the two algorithms as a
function of sequence length (for sequences generated from the phyclust R package [3]), which
is inversely correlated with noise (i.e. short sequences amount to noisy similarities). From these
experiments, it is clear that HS consistently outperforms agglomerative methods, with tremendous
improvements in the high-noise setting where it recovers a significant amount of the tree structure
while agglomerative methods do not.

5.3 Real-World Data

We apply hierarchical clustering methods to a yeast gene expression data set and one phylogenetic

data set from the PFAM database [5]. To evaluate our methods, we use a A-entropy metric defined

as follows: Given a permutation 7 and a similarity matrix W, we compute the rate of decay off of

the diagonal as §; = ﬁ Z;-:ld W) m(iva)> ford € {1,...,n —1}. Next, we compute the entropy
A

E(r) 2 =S pr(i) log pr (i) where pr (i) 2 (327, 34)~'4;. Finally, we compute A-entropy
as Ea(m) = E(Trandom) — E(7). A good clustering will have a large amount of the probability

mass concentrated at a few of the p.(i)s, thus yielding a high Ea (7). On the other hand, poor
clusterings will specify a more uniform distribution and will have lower A-entropy.

We first compare HS to single linkage on yeast gene expression data from DeRisi et al [4]. This
dataset consists of 7 expression profiles, which we use to generate Pearson correlations that we use
as similarities. We sampled gene subsets of size n = 512, 1024, and 2048 and ran both algorithms on
the reduced similarity matrix. We report A-entropy scores in Table 4(b). These scores quantitatively
demonstrate that HS outperfoms single linkage and additionally, we believe the clustering produced
by HS (Figure 4(a)) is qualitatively better than that of single linkage.

Finally, we run HS on real phylogeny data, specifically, a subset of the PDZ domain (PFAM Id:
PF00595). We consider this family because it is a highly-studied domain of evolutionarily well-
represented protein binding motifs. Using alignments of varying length, we generated similarity
matrices and computed A-entropy of clusterings produced by both HS and Single Linkage. The
results for three sequence lengths (Table 4(b)) show that HS and Single Linkage are comparable.

6 Discussion

In this paper we have presented a new analysis of spectral clustering in the presence of noise and
established tight information theoretic upper and lower bounds. As our analysis of spectral clustering
does not show that it is minimax-optimal it remains an open problem to further tighten, or establish
the tightness of, our analysis, and to find a computationally efficient minimax procedure in the
general case when similarities are not block constant. Identifying conditions under which one can
guarantee correctness for other forms of spectral clustering is another interesting direction. Finally,
our results apply only for binary hierarchical clusterings, yet k-way hierarchies are common in
practice. A future challenge is to extend our results to k-way hierarchies.
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