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Abstract

We consider a multi-armed bandit problem where there are two phases. The first
phase is an experimentation phase where the decision maker is free to explore
multiple options. In the second phase the decision maker has to commit to one of
the arms and stick with it. Cost is incurred during both phases with a higher cost
during the experimentation phase. We analyze the regret in this setup, and both
propose algorithms and provide upper and lower bounds that depend on the ratio
of the duration of the experimentation phase to the duration of the commitment
phase. Our analysis reveals that if given the choice, it is optimal to experiment
Θ(lnT ) steps and then commit, where T is the time horizon.

1 Introduction

In a range of applications, a dynamic decision making problem exhibits two distinctly different kinds
of phases: experimentation and commitment. In the first phase, the decision maker explores multiple
options, to determine which might be most suitable for the task at hand. However, eventually the
decision maker must commit to a choice, and use that decision for the duration of the problem
horizon. A notable feature of these phases in the models we study is that costs are incurred during
both phases; that is, experimentation is not carried out “offline,” but rather is run “live” in the actual
system.

For example, consider the design of a recommendation engine for an online retailer (such as Ama-
zon). Experimentation amounts to testing different recommendation strategies on arriving cus-
tomers. However, such testing is not carried out without consequences; the retailer might lose
potential rewards if experimentation leads to suboptimal recommendations. Eventually, the recom-
mendation engine must be stabilized (both from a software development standpoint and a customer
expectation standpoint), and when this happens the retailer has effectively committed to one strat-
egy moving forward. As another example, consider product design and delivery (e.g., tapeouts in
semiconductor manufacturing, or major releases in software engineering). The process of experi-
mentation during design entails costs to the producer, but eventually the experimentation must stop
and the design must be committed. Another example is that of dating followed by marriage to
hopefully, the best possible mate.

In this paper we consider a class of multi-armed bandit problems (which we call committing bandit
problems) that mix these two features: the decision maker is allowed to try different arms in each
period until commitment, at which point a final choice is made (“committed”) and the chosen arm
is used until the end of the horizon. Of course, models that investigate each phase in isolation are
extensively studied. If the problem consists of only experimentation, then we have the classical
multi-armed bandit problem, where the decision maker is interested in minimizing the expected
total regret against the best arm [9, 2]. At the other extreme, several papers have studied the pure
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exploration or budgeted learning problem, where the goal is to output the best arm at the end of an
experimentation phase [13, 6, 4]; no costs are incurred for experimentation, but after finite time a
single decision must be chosen (see [12] for a review).

Formally, in a committing bandit problem, the decision maker can experiment without constraints for
the firstN of T periods, but must commit to a single decision for the last T −N periods, where T is
the problem horizon. We first consider the soft deadline setting where the experimentation deadline
N can be chosen by the decision maker, but there is a cost incurred per experimentation period.
We divide this setting into two regimes depending on how N is chosen: the non-adaptive regime
(Section 3) in which the decision maker has to choose N before the algorithm begins running, and
the adaptive regime (Section 4) in whichN can be chosen adaptively as the algorithm runs.

We obtain two main results for the soft deadline setting. First, in both regimes, we find that the
best tradeoff between experimentation and commitment (in terms of expected regret performance)
is essentially obtained by experimenting for N = Θ(lnT ) periods, and then committing to the
empirical best action for the remaining T −Θ(lnT ) periods; this yields an expected average regret
of Θ(lnT/T ). Second, and somewhat surprisingly, we find that if the algorithm has access to
distributional information about the arms, then adaptivity provides no additional benefit (at least in
terms of expected regret performance); however, as we observe via simulations, on a sample path
basis adaptive algorithms can outperform nonadaptive algorithms due to the additional flexibility.
Finally, we demonstrate that if the algorithm has no initial distributional information, adaptivity is
beneficial: we demonstrate an adaptive algorithm that achieves Θ(lnT/T ) regret in this case.

We then study the hard deadline regime where the value of N is given to the decision maker in
advance (Section 5). This is a sensible assumption for problems where the decision maker cannot
control how long the experimentation period is; for example, in the product design example above,
the release date is often fixed well in advance, and the engineers are not generally free to alter it.
We propose the UCB-poly(δ) algorithm for this setting, where the parameter δ ∈ (0, 1) reflects the
tradeoff between experimentation and commitment. We show how to tune the algorithm to optimally
choose δ, based on the relative values of N and T .

We mention in passing that the celebrated exploration-exploitation dilemma is also a major issue
in our setup. During the first N periods the tradeoff between exploration and exploitation exists
bearing in mind that the last T − N periods will be used solely for exploitation. This changes the
standard setup so that exploration in the first N periods becomes more important, as we shall see in
our results.

2 The committing bandit problem

We first describe the setup of the classical stochastic multi-armed bandit problem, as it will serve as
background for the committing bandit problem. In a stochastic multi-armed bandit problem, there
are K independent arms; each arm i, when pulled, returns a reward which is independently and
identically drawn from a fixed Bernoulli distribution1 with unknown parameter θi ∈ [0, 1]. Let It
denote the index of the arm pulled at time t (It ∈ {1, 2, . . . ,K}), and let Xt denote the associated
reward. Note that E[Xt] = θIt . Also, we define the following notation:

θ∗ := max
1≤i≤K

θi, i∗ := arg max
1≤i≤K

θi, ∆i := θ∗ − θi, ∆ := min
i:∆i>0

∆i.

An allocation policy is an algorithm that chooses the next arm to pull based on the sequence of past
pulled arms and obtained rewards. The cumulative regret of an allocation policy A after time n is:

Rn =
n
∑

t=1

(X∗
t −Xt) ,

whereX∗
t is the reward that the algorithm would have received at time t if it had pulled the optimal

arm i∗. In other words, Rn is the cumulative loss due to the fact that the allocation policy does not
always pull the optimal arm. Let Ti(n) be the number of times that arm i is pulled up to time n.

1We assume Bernoulli distributions throughout the paper. Our results hold with minor modification for any
distribution with bounded support.
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Then:

E[Rn] = θ∗n−
K
∑

i=1

θiE[Ti(n)] =
∑

i#=i∗

∆iE[Ti(n)].

The reader is referred to the supplementary material for some well-known allocation policies, e.g.,
Unif (Uniform allocation) and UCB (Upper Confidence Bound) [2].
A recommendation policy is an algorithm that tries to recommend the “best” arm based on the
sequence of past pulled arms and obtained rewards. Suppose that after time n, a recommendation
policy R recommends the arm Jn as the “best” arm. Then the regret of recommendation policy R
after time n, called the simple regret in [4], is defined as

rn = θ∗ − θJn = ∆Jn .

The reader is also referred to the supplementary material for some natural recommendation policies,
e.g., EBA (Empirical Best Arm) andMPA (Most Played Arm).
The committing bandit problem considered in this paper is a version of the stochastic multi-armed
bandit problem in which the algorithm is forced to commit to only one arm after some period of
time. More precisely, the problem setting is as follows. Let T be the time horizon of the problem.
From time 1 to some timeN (N < T ), the algorithm can pull any arm in {1, 2, . . . ,K}. Then, from
time N + 1 to the end of the horizon (time T ), it must commit to pull only one arm. The first phase
(time 1 to N ) is called the experimentation phase, and the second phase (timeN + 1 to T ) is called
the commitment phase. We refer to time N as the experimentation deadline.

An algorithm for the committing bandit problem is a combination of an allocation and a recommen-
dation policy. That is, the algorithm has to decide which arm to pull during the first N slots, and
then choose an arm to commit to during the remaining T − N slots. Because we consider settings
where the algorithm designer can choose the experimentation deadline, we also assume a cost is
imposed during the experimentation phase; otherwise, it is never optimal to be forced to commit.
In particular, we assume that the reward earned during the experimentation phase is reduced by a
constant factor γ ∈ [0, 1). Thus the expected regretE[Reg] of such an algorithm is the average regret
across both phases, i.e.:

E[Reg] =
1

T

(

T
∑

t=1

θ∗ − γ
N
∑

t=1

E[θIt ]−
T
∑

t=N+1

E[θJN ]

)

= γ
E[RN ]

T
+

T −N

T
E[rN ]+(1−γ)

Nθ∗

T
.

2.1 Committing bandit regimes

We focus on three distinct regimes, that differ in the level of control given to the algorithm designer
in choosing the experimentation deadline.

Regime 1: Soft experimentation deadline, non-adaptive. In this regime, the value of T is given
to the algorithm. For a given value of T , the value of N can be chosen freely between 1 and T − 1,
but the choice must be made before the process begins.

Regime 2: Soft experimentation deadline, adaptive. The setting in this regime is the same as
the previous one, except for the fact that the algorithm can choose the value of N adaptively as
outcomes of past pulls are observed.

Regime 3: Hard experimentation deadline. In this regime, both N and T are fixed and given to
the algorithm. That is, the algorithm cannot control the experimentation deadlineN . We are mainly
interested in the asymptotic behavior of the algorithm when both N and T go to infinity.

2.2 Known lower-bounds

As mentioned in the Introduction section, the experimentation and commitment phases have each
been extensively studied in isolation. In this subsection, we only summarize briefly the known lower
bounds on cumulative regret and simple regret that will be used in the paper.
Result 1 (Distribution-dependent lower bound on cumulative regret [9]). For any allocation policy,
and for any set of reward distributions such that their parameters θi are not all equal, there exists
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an ordering of (θ1, . . . , θK) such that

E[Rn] ≥





∑

i#=i∗

∆i

D(pi‖p∗)
+ o(1)



 lnn,

where D(pi‖p∗) = pi log
pi

p∗
+ p∗ log p∗

pi
is the Kullback-Leibler divergence between two Bernoulli

reward distributions pi (of arm i) and p∗ (of the optimal arm), and o(1) → 0 as n → ∞.
Result 2 (Distribution-free lower bound on cumulative regret [13]). There exist positive constants c
and N0 such that for any allocation policy, there exists a set of Bernoulli reward distributions such
that

E[Rn] ≥ cK(lnn− lnK), ∀n ≥ N0.

The difference between Result 1 and Result 2 is that the lower bound in the former depends on the
parameters of reward distributions (hence, called distribution-dependent), while the lower bound
in the latter does not (hence, called distribution-free). That means, in the latter case, the reward
distributions can be chosen adversarially. Therefore, it should be clear that the distribution-free
lower bound is always higher than the distribution-dependent lower bound.
Result 3 (Distribution-dependent bound on simple regret [4]). For any pair of allocation and recom-
mendation policies, if the allocation policy can achieve an upper bound such that for all (Bernoulli)
reward distributions θ1, . . . , θK , there exists a constant C ≥ 0 with

E[Rn] ≤ Cf(n),

then for all sets ofK ≥ 3 Bernoulli reward distributions with parameters θi that are all distinct and
all different from 1, there exists an ordering (θ1, . . . , θK) such that

E[rn] ≥
∆

2
e−Df(n),

where D is a constant which can be calculated in closed form from C, and θ1, . . . , θK .

In particular, since E[Rn] ≤ θ∗n for any allocation policy, there exists a constant ξ depending only
on θ1, . . . , θK such that E[rn] ≥ (∆/2)e−ξn.
Result 4 (Distribution-free lower bound on simple regret [4]). For any pair of allocation and recom-

mendation policies, there exists a set of Bernoulli reward distributions such that E[rn] ≥
1

20

√

K

n
.

In the subsequent sections we analyze each of the committing bandit regimes in detail; in particular,
we provide constructive upper bounds and matching lower bounds on the regret in each regime. The
detailed proofs of all the results in this paper are presented in the supplementary material.

3 Regime 1: Soft experimentation deadline, non-adaptive

In this regime, for a given value of T , the value of N can be chosen freely between 1 and T − 1,
but only before the algorithm begins pulling arms. Our main insight is that there exist matching
upper and lower bounds of order Θ(lnT/T ); further, we propose an algorithm that can achieve this
performance.
Theorem 1. (1) Distribution-dependent lower bound: In Regime 1, for any algorithm, and any set
of K ≥ 3 Bernoulli reward distributions such that θi are all distinct and all different from 1, there
exists an ordering (θ1, . . . , θK) such that

E[Reg] ≥



max







(1 − γ)θ∗

ξ
,
∑

i#=i∗

∆i

D(pi‖p∗)







+ o(1)





lnT

T
,

where o(1) → 0 as T → ∞, and ξ is the constant discussed in Result 3.

(2)Distribution-free lower bound: Also, for any algorithm in Regime 1, there exists a set of Bernoulli
reward distributions such that

E[Reg] ≥ cK

(

1−
lnK

ln T

)

lnT

T
,

where c is the constant in Result 2.
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We now show that the Non-adaptive Unif-EBA algorithm (Algorithm 1) achieves the matching
upper bound, as stated in the following theorem.

Algorithm 1 Non-adaptive Unif-EBA
Input: a set of arms {1, 2, . . . ,K}, T ,∆
repeat
Sample each arm in {1, 2, . . . ,K} in the round robin fashion.

until each arm has been chosen
⌈

lnT/∆2
⌉

times.
Commit to the arm with maximum empirical average reward for the remaining periods.

Theorem 2. For the Non-adaptive Unif-EBA algorithm (Algorithm 1),

E[Reg] ≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i#=i∗

∆i +
2∆2

ln T





ln T

T
.

This matches the lower bounds in Theorem 1 to the correct order in T . Observe that in this regime,
both distribution-dependent and distribution-free lower bounds have the same asymptotic order of
lnT/T. However, the preceding algorithm requires knowing the value of∆. If∆ is unknown, a low
regret algorithm that matches the lower bound does not seem to be possible in this regime, because
of the relative nature of the regret. An algorithm may be unable to choose an N that explores
sufficiently long when arms are difficult to distinguish, and yet commits quickly when arms are easy
to distinguish.

4 Regime 2: Soft experimentation deadline, adaptive

The setting in this regime is the same as the previous one, except that the algorithm is not required
to choose N before it runs, i.e., N can be chosen adaptively. Thus, in particular, it is possible for
the algorithm to reject bad arms or to estimate ∆ as it runs.

We first present the lower bounds on regret for any algorithm in this regime.
Theorem 3. (1) Distribution-dependent lower bound: In Regime 2, for any algorithm, and any set
of K ≥ 3 Bernoulli reward distribution such that θi are all distinct and all different from 1, there
exists an ordering (θ1, . . . , θK) such that

E[Reg] ≥





∑

i#=i∗

∆i

D(pi‖p∗)
+ o(1)





lnT

T
,

where o(1) → 0 as T → ∞.

(2)Distribution-free lower bound: Also, for any algorithm in Regime 2, there exists a set of Bernoulli
reward distributions such that

E[Reg] ≥ cK

(

1−
lnK

ln T

)

lnT

T
,

where c is the constant in Result 2.

Next, we derive several sequential algorithms with matching upper bounds on regret. The first al-
gorithm is called Sequential Elimination & Commitment 1 (SEC1) (Algorithm 2); this algorithm
requires the values of∆ and θ∗.
Theorem 4. For the SEC1 algorithm (Algorithm 2),

E[Reg] ≤
K

∆2



(1− γ)θ∗ +
γ

K

∑

i#=i∗

∆i + b





lnT

T
,

where b =
(

2 + ∆2(K+2)

(1−e−∆2/2)2

)

1
lnT

→ 0 as T → ∞.
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Algorithm 2 Sequential Elimination & Commitment 1 (SEC1)
Input: A set of arms {1, 2, . . . ,K}, T ,∆, θ∗
Initialization: Setm = 0, B0 = {1, 2, . . . ,K}, α = 1/∆2, ε1 = 1/∆, ε2 = ∆/2.
repeat
Sample each arm in Bm once. Let Si

m be the total reward obtained from arm i so far.
Set Bm+1 = Bm,m = m+ 1.
for i ∈ Bm do
ifm ≤ )α lnT * and |mθ∗ − Si

m| > ε1 lnT then
Delete arm i from Bm.

end if
ifm > )α lnT * and |mθ∗ − Si

m| > ε2m then
Delete arm i from Bm.

end if
end for

until there is only one arm in Bm, then commit to that arm or the horizon T is reached.

Observe that this algorithm matches the lower bounds in Theorem 3 to the correct order in T . We
note that whenN can be chosen adaptively, both distribution-dependent and distribution-free lower
bounds have the same asymptotic order of lnT/T as the ones in the non-adaptive regime. In the
distribution-dependent case, therefore, we obtain the surprising conclusion that adaptivity does not
reduce the optimal expected regret. Indeed, the regret bound of SEC1 in Theorem 4 is exactly
the same as for Non-adaptive Unif-EBA in Theorem 2. We conjecture that the constant 1/∆2 is
actually the best achievable constant on expected regret.

What is the benefit of adaptivity then? As simulation results in Section 6 suggest, SEC1 performs
much better than Non-adaptive Unif-EBA in practice. The reason is rather intuitive: due to its
adaptive nature, SEC1 is able to eliminate poor arms much earlier than the

⌈

lnT/∆2
⌉

threshold,
while Non-adaptive Unif-EBA has to wait until that point to make decisions.
Remark 1. Although SEC1 requires the value of θ∗, that requirement can be relaxed as θ∗ can
be estimated by the maximum empirical average reward across arms. In fact, as we will see in
the simulations (Section 6), another version of SEC1 (called SEC2) in which mθ∗ is replaced by
maxj∈Bm Sj

m achieves a nearly identical performance.

Now, if the value of∆ is unknown, we have the following Sequential Committing UCB (SC-UCB)
algorithm which is based on the improved UCB algorithm in [3]. The idea is to maintain an estimate
of∆ and reduce it over time.

Algorithm 3 Sequential Committing UCB (SC-UCB)
Input: A set of arms {1, 2, . . . ,K}, T
Initialization: Setm = 0, ∆̃0 = 0, B0 = {1, 2, . . . ,K}.
form = 0, 1, 2, . . . , +log2(T/e)/2, do
if |Bm| > 1 then
Sample each arm in Bm until each arm has been chosen nm =

⌈

2 ln(T ∆̃2
m)/∆̃2

m

⌉

times.
Let Si

m be the total reward obtained from arm i so far.
Delete all arms i from Bm for which

maxj∈Bm Sj
m − Si

m > 2
√

nm ln(T ∆̃2
m)/2

to obtain Bm+1.
Set ∆̃m+1 = ∆̃m/2.

else
Commit to the single arm in Bm.

end if
end for
Commit to any arm in Bm.
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Theorem 5. For the SC-UCB algorithm (Algorithm 3),

E[Reg] ≤
∑

i#=i∗

(

γ∆i + (1 − γ)θ∗

∆2
i

)

ln(T∆2
i )

T

(

32 +
∆2

i + 96

ln(T∆2
i )

)

.

This matches the lower bounds in Theorem 3 to the correct order in T .

5 Regime 3: Hard experimentation deadline

We now investigate the third regime where, in contrast to the previous two, the experimentation
deadline N is fixed exogenously together with T . We consider the asymptotic behavior of regret
as T and N approach infinity together. Note that since in this case the experimentation deadline is
outside the algorithm designer’s control, we set the cost of experimentation γ = 1 for this section.

Because both T and N are given, the main challenge in this context is choosing an algorithm that
optimally balances the cumulative and simple regrets. We design and tune an algorithm that achieves
this balance.

We know from Result 3 that for any pair of allocation and recommendation policies, if E[RN ] ≤
C1f(N), then E[rN ] ≥ (∆/2)e−Df(N). In other words, given an allocation policy A that has a
cumulative regret bound C1f(N) (for some constant C1), the best (distribution-dependent) upper
bound that any recommendation policy can achieve is C2e−C3f(N) (for some constants C2 and C3).
Assuming that there exists a recommendation policyRA that achieves such an upper bound, we have
the following upper bound on regret when applying [A,RA] to the committing bandit problem:

E[Reg] ≤ C1
f(N)

T
+

T −N

T
C2e

−C3f(N). (1)

One can clearly see the trade-off between experimentation and commitment in (1): the smaller the
first term, the larger the second term, and vice versa. Note that ln(N) ≤ f(N) ≤ N, and we have
algorithms that give us only either one of the extremes (e.g.,Unif has f(N) = N , whileUCB [2] has
f(N) = lnN ). On the other hand, it would be useful to have an algorithm that can balance between
these two extremes. In particular, we focus on finding a pair of allocation and recommendation
policies which can simultaneously achieve the allocation bound C1N δ and the recommendation
bound C2e−C3N

δ where 0 < δ < 1.

Let us consider a modification of the UCB allocation policy called UCB-poly(δ) (for 0 < δ < 1),
where for t > K , with θ̂i,Ti(t−1) be the empirical average of rewards from arm i so far,

It = arg max
1≤i≤K

(

θ̂i,Ti(t−1) +

√

2(t− 1)δ

Ti(t− 1)

)

.

Then we have the following result on the upper bound of its cumulative regret.
Theorem 6. The cumulative regret of UCB-poly(δ) is upper-bounded by

E[Rn] ≤

(

∑

i:∆i>0

8

∆i
+ o(1)

)

nδ,

where o(1) → 0 as n → ∞. Moreover, the simple regret for the pair [UCB-poly(δ), EBA] is
upper-bounded by

E[rn] ≤



2
∑

i#=i∗

∆i



 e−χnδ

,

where χ = min
i

σ

2
∆2

i .

In the supplementary material (see Theorem 7 there) we show that in the limit, as T andN increase
to infinity, the optimal value of δ can be chosen as limN→∞ ln(ln(T (N) − N))/ lnN if that limit
exists. In particular, if T (N) is super-exponential in N we get an optimal δ of 1 representing pure
exploration in the experimentation phase. If T (N) is sub-exponential we get an optimal δ of 0
representing a standard UCB during the experimentation phase. If T (N) is exponential we obtain δ
in between.
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Figure 1: Numerical performances whereK = 20, γ = 0.75, and∆ = 0.02

6 Simulations

In this section, we present numerical results on the performance ofNon-adaptive Unif-EBA, SEC1,
SEC2, and SC-UCB algorithms. (Recall that the SEC2 algorithm is a version of SEC1 in which
mθ∗ is replaced by maxj∈Bm Sj

m, as discussed in Remark 1). The simulation setting includes K
arms with Bernoulli reward distributions, the time horizon T , and the values of γ and ∆. The arm
configurations are generated as follows. For each experiment, θ∗ is generated independently and
uniformly in the [0.5, 1] interval, and the second best arm reward is set as θ∗2 = θ∗ −∆. These two
values are then assigned to two randomly chosen arms, and the rest of arm rewards are generated
independently and uniformly in [0, θ∗2 ].

Figure 1 shows the regrets of the above algorithms for various values of T (in logarithmic scale)
with parameters K = 20, γ = 0.75, and ∆ = 0.02 (we omitted error bars because the variation
was small). Observe that the performances of SEC1 and SEC2 are nearly identical, which suggests
that the requirement of knowing θ∗ in SEC1 can be relaxed (see Remark 1). Moreover, SEC1 (or
equivalently, SEC2) performs much better than Non-adaptive Unif-EBA due to its adaptive nature
(see the discussion before Remark 1). Particularly, the performance of Non-adaptive Unif-EBA
is quite poor when the experimentation deadline is roughly equal to T , since the algorithm does
not commit before the experimentation deadline. Finally, SC-UCB does not perform as well as the
others when T is large, but this algorithm does not need to know∆, and thus suffers a performance
loss due to the additional effort required to estimate∆.

Additional simulation results can be found in the supplementary material.

7 Extensions and future directions

Our work is a first step in the study of the committing bandit setup. There are several extensions that
call for future research which we outline below.

First, an extension of the basic committing bandits setup to the case of contextual bandits [10, 11]
is natural. In this setup before choosing an arm an additional “context” is provided to the decision
maker. The problem is to choose a decision rule from a given class that prescribes what arm to
choose for every context. This setup is more realistic when the decision maker has to commit to
such a rule after some exploration time. Second, models with many arms (structured as in [8, 5])
or even infinitely arms (as in [1, 7, 14]) are of interest here as they may lead to different regimes
and results here. Third, our models assumed that the commitment time is either predetermined or
according to the decision maker’s will. There are other models of interest such as the case where
some stochastic process determines the commitment time.

Finally, a situation where the exploration and commitment phases alternate (randomly or according
to a given schedule or at a cost) is of practical interest. This can represent the situation where there
are a few releases of a product where exploration can be done until the time of the release, when the
product is “frozen” until a new exploration period followed by a new release.
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