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Abstract

We consider the problem of identifying a sparse set of relevant columns and rows
in a large data matrix with highly corrupted entries. This problem of identify-
ing groups from a collection of bipartite variables such as proteins and drugs,
biological species and gene sequences, malware and signatures, etc is commonly
referred to as biclustering or co-clustering. Despite its great practical relevance,
and although several ad-hoc methods are available for biclustering, theoretical
analysis of the problem is largely non-existent. The problem we consider is also
closely related to structured multiple hypothesis testing, an area of statistics that
has recently witnessed a flurry of activity. We make the following contributions

1. We prove lower bounds on the minimum signal strength needed for success-
ful recovery of a bicluster as a function of the noise variance, size of the
matrix and bicluster of interest.

2. We show that a combinatorial procedure based on the scan statistic achieves
this optimal limit.

3. We characterize the SNR required by several computationally tractable pro-
cedures for biclustering including element-wise thresholding, column/row
average thresholding and a convex relaxation approach to sparse singular
vector decomposition.

1 Introduction

Biclustering is the problem of identifying a (typically) sparse set of relevant columns and rows
in a large, noisy data matrix. This problem along with the first algorithm to solve it were pro-
posed by Hartigan [14] as a way to directly cluster data matrices to produce clusters with greater
interpretability. Biclustering routinely arises in several applications such as discovering groups of
proteins and drugs that interact with each other [19], learning phylogenetic relationships between
different species based on alignments of snippets of their gene sequences [30], identifying malware
that have similar signatures [7] and identifying groups of users with similar tastes for commercial
products [29]. In these applications, the data matrix is often indexed by (object, feature) pairs and
the goal is to identify clusters in this set of bipartite variables.

In standard clustering problems, the goal is only to identify meaningful groups of objects and the
methods typically use the entire feature vector to define a notion of similarity between the objects.
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Biclustering can be thought of as high-dimensional clustering where only a subset of the features
are relevant for identifying similar objects, and the goal is to identify not only groups of objects
that are similar, but also which features are relevant to the clustering task. Consider, for instance
gene expression data where the objects correspond to genes, and the features correspond to their ex-
pression levels under a variety of experimental conditions. Our present understanding of biological
systems leads us to expect that subsets of genes will be co-expressed only under a small number
of experimental conditions. Although, pairs of genes are not expected to be similar under all ex-
perimental conditions it is critical to be able to discover local expression patterns, which can for
instance correspond to joint participation in a particular biological pathway or process. Thus, while
clustering aims to identify global structure in the data, biclustering take a more local approach by
jointly clustering both objects and features.

Prevalent techniques for finding biclusters are typically heuristic procedures with little or no theo-
retical underpinning. In order to study, understand and compare biclustering algorithms we consider
a simple theoretical model of biclustering [18, 17, 26]. This model is akin to the spiked covariance
model of [15] widely used in the study of PCA in high-dimensions.

We will focus on the following simple observation model for the matrix A ∈ Rn1×n2 :

A = βuv′ + ∆ (1)

where ∆ = {∆ij}i∈[n1],j∈[n2] is a random matrix whose entries are i.i.d. N (0, σ2) with σ2 > 0
known, u = {ui : i ∈ [n1]} and v = {vi : i ∈ [n2]} are unknown deterministic unit vectors in
Rn1 and Rn2 , respectively, and β > 0 is a constant. To simplify the presentation, we assume that
u ∝ {0, 1}n1 and v ∝ {0, 1}n2 . Let K1 = {i : ui 6= 0} and K2 = {i : vi 6= 0} be the sets
indexing the non-zero components of the vectors u and v, respectively. We assume that u and v are
sparse, that is, k1 := |K1| � n1 and k2 := |K2| � n2. While the sets (K1,K2) are unknown,
we assume that their cardinalities are known. Notice that the magnitude of the signal for all the
coordinates in the bicluster K1×K2 is β√

k1k2
. The parameter β measures the strength of the signal,

and is the key quantity we will be studying.

We focus on the case of a single bicluster that appears as an elevated sub-matrix of size k1×k2 with
signal strength β embedded in a large n1×n2 data matrix with entries corrupted by additive Gaussian
noise with variance σ2. Under this model, the biclustering problem is formulated as the problem
of estimating the sets K1 and K2, based on a single noisy observation A of the unknown signal
matrix βuv′. Biclustering is most subtle when the matrix is large with several irrelevant variables,
the entries are highly noisy, and the bicluster is small as defined by a sparse set of rows/columns.
We provide a sharp characterization of tuples of (β, n1, n2, k1, k2, σ

2) under which it is possible to
recover the bicluster and study several common methods and establish the regimes under which they
succeed.

We establish minimax lower and upper bounds for the following class of models. Let

Θ(β0, k1, k2) := {(β,K1,K2) : β ≥ β0, |K1| = k1,K1 ⊂ [n1], |K2| = k2,K2 ⊂ [n2]} (2)

be a set of parameters. For a parameter θ ∈ Θ, let Pθ denote the joint distribution of the entries of
A = {aij}i∈[n1],j∈[n2], whose density with respect to the Lebesgue measure is∏

ij

N (aij ;β(k1k2)−1/2 1I{i ∈ K1, j ∈ K2}, σ2), (3)

where the notation N (z;µ, σ2) denotes the distribution p(z) ∼ N (µ, σ2) of a Gaussian random
variable with mean µ and variance σ2, and 1I denotes the indicator function.

We derive a lower bound that identifies tuples of (β, n1, n2, k1, k2, σ
2) under which we can recover

the true biclustering from a noisy high dimensional matrix. We show that a combinatorial pro-
cedure based on the scan statistic achieves the minimax optimal limits, however it is impractical
as it requires enumerating all possible sub-matrices of a given size in a large matrix. We analyze
the scalings (i.e. the relation between β and (n1, n2, k1, k2, σ

2)) under which some computation-
ally tractable procedures for biclustering including element-wise thresholding, column/row average
thresholding and sparse singular vector decomposition (SSVD) succeed with high probability.

We consider the detection of both small and large biclusters of weak activation, and show that at the
minimax scaling the problem is surprisingly subtle (e.g., even detecting big clusters is quite hard).
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In Table 1, we describe our main findings and compare the scalings under which the various algo-
rithms succeed.

Algorithm Combinatorial Thresholding Row/Column Averaging Sparse SVD
SNR scaling Minimax Weak Intermediate Weak
Bicluster size Any Any (n

1/2+α
1 × n1/2+α

2 ), α ∈ (0, 1/2) Any
Theorem 2 Theorem 3 Theorem 4 Theorem 5

Where the scalings are,

1. Minimax: β ∼ σmax
(√

k1 log(n1 − k1),
√
k2 log(n2 − k2)

)
2. Weak: β ∼ σmax

(√
k1k2 log(n1 − k1),

√
k1k2 log(n2 − k2)

)
3. Intermediate (for large clusters): β ∼ σmax

(√
k1k2 log(n1−k1)

nα2
,

√
k1k2 log(n2−k2)

nα1

)
Element-wise thresholding does not take advantage of any structure in the data matrix and hence
does not achieve the minimax scaling for any bicluster size. If the clusters are big enough
row/column averaging performs better than element-wise thresholding since it can take advantage
of structure. We also study a convex relaxation for sparse SVD, based on the DSPCA algorithm pro-
posed by [11] that encourages the singular vectors of the matrix to be supported over a sparse set of
variables. However, despite the increasing popularity of this method, we show that it is only guaran-
teed to yield a sparse set of singular vectors when the SNR is quite high, equivalent to element-wise
thresholding, and fails for stronger scalings of the SNR.

1.1 Related work

Due to its practical importance and difficulty biclustering has attracted considerable attention (for
some recent surveys see [9, 27, 20, 22]). Broadly algorithms for biclustering can be categorized as
either score-based searches, or spectral algorithms. Many of the proposed algorithms for identifying
relevant clusters are based on heuristic searches whose goal is to identify large average sub-matrices
or sub-matrices that are well fit by a two-way ANOVA model. Sun et. al. [26] provide some
statistical backing for these exhaustive search procedures. In particular, they show how to construct
a test via exhaustive search to distinguish when there is a small sub-matrix of weak activation from
the “null” case when there is no bicluster.

The premise behind the spectral algorithms is that if there was a sub-matrix embedded in a large
matrix, then this sub-matrix could be identified from the left and right singular vectors of A. In the
case when exactly one of u and v is random, the model (1) can be related to the spiked covariance
model of [15]. In the case when v is random, the matrix A has independent columns and dependent
rows. Therefore, A′A is a spiked covariance matrix and it is possible to use the existing theoretical
results on the first eigenvalue to characterize the left singular vector of A. A lot of recent work has
dealt with estimation of sparse eigenvectors of A′A, see for example [32, 16, 24, 31, 2]. For biclus-
tering applications, the assumption that exactly one u or v is random, is not justifiable, therefore,
theoretical results for the spiked covariance model do not translate directly. Singular vectors of the
model (1) have been analyzed by [21], improving on earlier results of [6]. These results however are
asymptotic and do not consider the case when u and v are sparse.

Our setup for the biclustering problem also falls in the framework of structured normal means multi-
ple hypothesis testing problems, where for each entry in the matrix the hypotheses are that the entry
has mean 0 versus an elevated mean. The presence of a bicluster (sub-matrix) however imposes
structure on which elements are elevated concurrently. Recently, several papers have investigated
the structured normal means setting for ordered domains. For example, [5] consider the detection of
elevated intervals and other parametric structures along an ordered line or grid, [4] consider detec-
tion of elevated connected paths in tree and lattice topologies, [3] considers nonparametric cluster
structures in a regular grid. In addition, [1] consider testing of different elevated structures in a gen-
eral but known graph topology. Our setup for the biclustering problem requires identification of an
elevated submatrix in an unordered matrix. At a high level, all these results suggest that it is possible
to leverage the structure to improve the SNR threshold at which the hypothesis testing problem is
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feasible. However, computationally efficient procedures that achieve the minimax SNR thresholds
are only known for a few of these problems. Our results for biclustering have a similar flavor, in
that the minimax threshold requires a combinatorial procedure whereas the computationally efficient
procedures we investigate are often sub-optimal.

The rest of this paper is organized as follows. In Section 2, we provide a lower bound on the
minimum signal strength needed for successfully identifying the bicluster. Section 3 presents a
combinatorial procedure which achieves the lower bound and hence is minimax optimal. We inves-
tigate some computationally efficient procedures in Section 4. Simulation results are presented in
Section 5 and we conclude in Section 6. All proofs are deferred to the Appendix.

2 Lower bound

In this section, we derive a lower bound for the problem of identifying the correct bicluster, indexed
by K1 and K2, in model (1). In particular, we derive conditions on (β, n1, n2, k1, k2, σ

2) under
which any method is going to make an error when estimating the correct cluster. Intuitively, if either
the signal-to-noise ratio β/σ or the cluster size is small, the minimum signal strength needed will
be high since it is harder to distinguish the bicluster from the noise.
Theorem 1. Let α ∈ (0, 1

8 ) and

βmin = βmin(n1, n2, k1, k2, σ)

= σ
√
αmax

√k1 log(n1 − k1),
√
k2 log(n2 − k2),

√
k1k2 log(n1 − k1)(n2 − k1)

k1 + k2 − 1

 .

(4)
Then for all β0 ≤ βmin,

inf
Φ

sup
θ∈Θ(β0,k1,k2)

Pθ[Φ(A) 6= (K1(θ),K2(θ))] ≥
√
M

1 +
√
M

(
1− 2α− 2α

logM

)
n1,n2→∞−−−−−−→ 1−2α,

(5)
where M = min(n1 − k1, n2 − k2), Θ(β0, k1, k2) is given in (2) and the infimum is over all
measurable maps Φ : Rn1×n2 7→ 2[n1] × 2[n2].

The result can be interpreted in the following way: for any biclustering procedure Φ, if β0 ≤ βmin,
then there exists some element in the model class Θ(β0, k1, k2) such that the probability of incor-
rectly identifying the sets K1 and K2 is bounded away from zero.

The proof is based on a standard technique described in Chapter 2.6 of [28]. We start by identifying
a subset of parameter tuples that are hard to distinguish. Once a suitable finite set is identified, tools
for establishing lower bounds on the error in multiple-hypothesis testing can be directly applied.
These tools only require computing the Kullback-Leibler (KL) divergence between two distribu-
tions Pθ1 and Pθ2 , which in the case of model (1) are two multivariate normal distributions. These
constructions and calculations are described in detail in the Appendix.

3 Minimax optimal combinatorial procedure

We now investigate a combinatorial procedure achieving the lower bound of Theorem 1, in the sense
that, for any θ ∈ Θ(βmin, k1, k2), the probability of recovering the true bicluster (K1,K2) tends to
one as n1 and n2 grow unbounded. This scan procedure consists in enumerating all possible pairs
of subsets of the row and column indexes of size k1 and k2, respectively, and choosing the one
whose corresponding submatrix has the largest overall sum. In detail, for an observed matrix A and
two candidate subsets K̃1 ⊂ [n1] and K̃2 ⊂ [n2], we define the associated score S(K̃1, K̃2) :=∑
i∈K̃1

∑
j∈K̃2

aij . The estimated bicluster is the pair of subsets of sizes k1 and k2 achieving the
highest score:

Ψ(A) := argmax
(K̃1,K̃2)

S(K̃1, K̃2) subject to |K̃1| = k1, |K̃2| = k2. (6)

The following theorem determines the signal strength β needed for the decoder Ψ to find the true
bicluster.
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Theorem 2. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2) and assume that k1 ≤ n1/2 and k2 ≤ n2/2. If

β ≥ 4σmax

√k1 log(n1 − k1),
√
k2 log(n2 − k2),

√
2k1k2 log(n1 − k1)(n2 − k2)

k1 + k2

 (7)

then P[Ψ(A) 6= (K1,K2)] ≤ 2[(n1 − k1)−1 + (n2 − k2)−1] where Ψ is the decoder defined in (6).

Comparing to the lower bound in Theorem 1, we observe that the combinatorial procedure using the
decoder Ψ that looks for all possible clusters and chooses the one with largest score achieves the
lower bound up to constants. Unfortunately, this procedure is not practical for data sets commonly
encountered in practice, as it requires enumerating all

(
n1

k1

)(
n2

k2

)
possible sub-matrices of size k1 ×

k2. The combinatorial procedure requires the signal to be positive, but not necessarily constant
throughout the bicluster. In fact it is easy to see that provided the average signal in the bicluster is
larger than that stipulated by the theorem this procedure succeeds with high probability irrespective
of how the signal is distributed across the bicluster. Finally, we remark that the estimation of the
cluster is done under the assumption that k1 and k2 are known. Establishing minimax lower bounds
and a procedure that adapts to unknown k1 and k2 is an open problem.

4 Computationally efficient biclustering procedures

In this section we investigate the performance of various procedures for biclustering, that, unlike the
optimal scan statistic procedure studied in the previous section, are computationally tractable. For
each of these procedures however, computational ease comes at the cost of suboptimal performance:
recovery of the true bicluster is only possible if the β is much larger than the minimax signal strength
of Theorem 1.

4.1 Element-wise thresholding

The simplest procedure that we analyze is based on element-wise thresholding. The bicluster is
estimated as

Ψthr(A, τ) := {(i, j) ∈ [n1]× [n2] : |aij | ≥ τ} (8)

where τ > 0 is a parameter. The following theorem characterizes the signal strength β required for
the element-wise thresholding to succeed in recovering the bicluster.

Theorem 3. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2) and fix δ > 0. Set the threshold τ as

τ = σ

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ
.

If

β ≥
√
k1k2σ

(√
2 log

k1k2

δ
+

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ

)

then P[Ψthr(A, τ) 6= K1 ×K2] = o(δ/(k1k2)).

Comparing Theorem 3 with the lower bound in Theorem 1, we observe that the signal
strength β needs to be O(max(

√
k1,
√
k2)) larger than the lower bound. This is not sur-

prising, since the element-wise thresholding is not exploiting the structure of the problem,
but is assuming that the large elements of the matrix A are positioned randomly. From the
proof it is not hard to see that this upper bound is tight up to constants, i.e. if β ≤

c
√
k1k2σ

(√
2 log k1k2

δ +
√

2 log (n1−k1)(n2−k2)+k1(n2−k2)+k2(n1−k1)
δ

)
for a small enough con-

stant c then thresholding will no longer recover the bicluster with probability at least 1− δ. It is also
worth noting that thresholding neither requires the signal in the bicluster to be constant nor positive
provided it is larger in magnitude, at every entry, than the threshold specified in the theorem.
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4.2 Row/Column averaging

Next, we analyze another a procedure based on column and row averaging. When the bicluster
is large this procedure exploits the structure of the problem and outperforms the simple element-
wise thresholding and the sparse SVD, which is discussed in the following section. The averaging
procedure works only well if the bicluster is “large”, as specified below, since otherwise the row or
column average is dominated by the noise.

More precisely, the averaging procedure computes the average of each row and column of A and
outputs the k1 rows and k2 columns with the largest average. Let {rr,i}i∈[n1] and {rc,j}j∈[n2] denote
the positions of rows and columns when they are ordered according to row and column averages in
descending order. The bicluster is estimated then as

Ψavg(A) := {i ∈ [n1] : rr,i ≤ k1} × {j ∈ [n2] : rc,j ≤ k2}. (9)

The following theorem characterizes the signal strength β required for the averaging procedure to
succeed in recovering the bicluster.

Theorem 4. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2). If k1 = Ω(n
1/2+α
1 ) and k2 = Ω(n

1/2+α
2 ), where

α ∈ (0, 1/2) is a constant and,

β ≥ 4σmax

(√
k1k2 log(n1 − k1)

nα2
,

√
k1k2 log(n2 − k2)

nα1

)
then P[Ψ(A) 6= (K1,K2)] ≤ [n−1

1 + n−1
2 ].

Comparing to Theorem 3, we observe that the averaging requires lower signal strength than the
element-wise thresholding when the bicluster is large, that is, k1 = Ω(

√
n1) and k2 = Ω(

√
n2).

Unless both k1 = O(n1) and k2 = O(n2), the procedure does not achieve the lower bound of
Theorem 1, however, the procedure is simple and computationally efficient. It is also not hard to
show that this theorem is sharp in its characterization of the averaging procedure. Further, unlike
thresholding, averaging requires the signal to be positive in the bicluster.

It is interesting to note that a large bicluster can also be identified without assuming the normality
of the noise matrix ∆. This non-parametric extension is based on a simple sign-test, and the details
are provided in Appendix.

4.3 Sparse singular value decomposition (SSVD)

An alternate way to estimateK1 andK2 would be based on the singular value decomposition (SVD),
i.e. finding ũ and ṽ that maximize 〈ũ,Aṽ〉, and then threshold the elements of ũ and ṽ. Unfortu-
nately, such a method would perform poorly when the signal β is weak and the dimensionality is
high, since, due to the accumulation of noise, ũ and ṽ are poor estimates of u and v and and do not
exploit the fact that u and v are sparse.

In fact, it is now well understood [8] that SVD is strongly inconsistent when the signal strength is
weak, i.e. ∠(ũ,u) → π/2 (and similarly for v) almost surely. See [26] for a clear exposition and
discussion of this inconsistency in the SVD setting.

To properly exploit the sparsity in the singular vectors, it seems natural to impose a cardinality
constraint to obtain a sparse singular vector decomposition (SSVD):

max
u∈Sn1−1,v∈Sn2−1

〈u,Av〉 subject to ||u||0 ≤ k1, ||v||0 ≤ k2,

which can be further rewritten as

max
Z∈Rn2×n1

tr AZ subject to Z = vu′, ||u||2 = 1, ||v||2 = 1, ||u||0 ≤ k1, ||v||0 ≤ k2. (10)

The above problem is non-convex and computationally intractable.

Inspired by the convex relaxation methods for sparse principal component analysis proposed by
[11], we consider the following relaxation the SSVD:

max
X∈R(n1+n2)×(n1+n2)

tr AX21 − λ1′|X21|1 subject to X � 0, tr X11 = 1, tr X22 = 1, (11)
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where X is the block matrix [
X11 X12

X21 X22

]
with the block X21 corresponding to Z in (10). If the optimal solution X̂ is of rank 1, then, nec-
essarily, X̂ =

(
û
v̂

)
(û′ v̂′). Based on the sparse singular vectors û and v̂, we estimate the bicluster

as
K̂1 = {j ∈ [n1] : ûj 6= 0} and K̂2 = {j ∈ [n2] : v̂j 6= 0}. (12)

The user defined parameter λ controls the sparsity of the solution X̂21, and, therefore, provided
the solution is of rank one, it also controls the sparsity of the vectors û and v̂ and of the estimated
bicluster.

The following theorem provides sufficient conditions for the solution X̂ to be rank one and to recover
the bicluster.
Theorem 5. Consider the model in (1). Assume k1 � k2 and k1 ≤ n1/2 and k2 ≤ n2/2. If

β ≥ 2σ
√
k1k2 log(n1 − k1)(n2 − k2) (13)

then the solution X̂ of the optimization problem in (11) with λ = β
2
√
k1k2

is of rank 1 with probability

1−O(k−1
1 ). Furthermore, we have that (K̂1, K̂2) = (K1,K2) with probability 1−O(k−1

1 ).

It is worth noting that SSVD correctly recovers signed vectors û and v̂ under this signal strength. In
particular, the procedure works even if the u and v in Equation 1 are signed.

The following theorem establishes necessary conditions for the SSVD to have a rank 1 solution that
correctly identifies the bicluster.
Theorem 6. Consider the model in (1). Fix c ∈ (0, 1/2). Assume that k1 � k2 and k1 = o(n1/2−c)

and k2 = o(n
1/2−c
2 ). If

β ≤ 2σ
√
ck1k2 log max(n1 − k1, n2 − k2), (14)

with λ = β
2
√
k1k2

then the optimization problem (11) does not have a rank 1 solution that correctly

recovers the sparsity pattern with probability at least 1 − O(exp(−(
√
k1 +

√
k2)2) for sufficiently

large n1 and n2.

From Theorem 6 observe that the sufficient conditions of Theorem 5 are sharp. In particular, the two
theorems establish that the SSVD does not establish the lower bound given in Theorem 1. The signal
strength needs to be of the same order as for the element-wise thresholding, which is somewhat
surprising since from the formulation of the SSVD optimization problem it seems that the procedure
uses the structure of the problem. From numerical simulations in Section 5 we observe that although
SSVD requires the same scaling as thresholding, it consistently performs slightly better at a fixed
signal strength.

5 Simulation results

We test the performance of the three computationally efficient procedures on synthetic data: thresh-
olding, averaging and sparse SVD. For sparse SVD we use an implementation posted online by [11].
We generate data from (1) with n = n1 = n2, k = k1 = k2, σ2 = 1 and u = v ∝ (1′k,0

′
n−k)′.

For each algorithm we plot the Hamming fraction (i.e. the Hamming distance between sû and su
rescaled to be between 0 and 1) against the rescaled sample size. In each case we average the results
over 50 runs.

For thresholding and sparse SVD the rescaled scaling (x-axis) is β

k
√

log(n−k)
and for averaging the

rescaled scaling (x-axis) is βnα

k
√

log(n−k)
. We observe that there is a sharp threshold between success

and failure of the algorithms, and the curves show good agreement with our theory.

The vertical line shows the point after which successful recovery happens for all values of n. We can
make a direct comparison between thresholding and sparse SVD (since the curves are identically
rescaled) to see that at least empirically sparse SVD succeeds at a smaller scaling constant than
thresholding even though their asymptotic rates are identical.
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Figure 1: Thresholding: Hamming fraction versus rescaled signal strength.
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Figure 2: Averaging: Hamming fraction versus rescaled signal strength.
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Figure 3: Sparse SVD: Hamming fraction versus rescaled signal strength.

6 Discussion

In this paper, we analyze biclustering using a simple statistical model (1), where a sparse rank one
matrix is perturbed with noise. Using this model, we have characterized the minimal signal strength
below which no procedure can succeed in recovering the bicluster. This lower bound can be matched
using an exhaustive search technique. However, it is still an open problem to find a computationally
efficient procedure that is minimax optimal.

Amini et. al. [2] analyze the convex relaxation procedure proposed in [11] for high-dimensional
sparse PCA. Under the minimax scaling for this problem they show that provided a rank-1 solution
exists it has the desired sparsity pattern (they were however not able to show that a rank-1 solution
exists with high probability). Somewhat surprisingly, we show that in the SVD case a rank-1 solution
with the desired sparsity pattern does not exist with high probability. The two settings however are
not identical since the noise in the spiked covariance model is Wishart rather than Gaussian, and
has correlated entries. It would be interesting to analyze whether our negative result has similar
implications for the sparse PCA setting.

The focus of our paper has been on a model with one cluster, which although simple, provides
several interesting theoretical insights. In practice, data often contains multiple clusters which need
to be estimated. Many existing algorithms (see e.g. [17] and [18]) try to estimate multiple clusters
and it would be useful to analyze these theoretically.

Furthermore, the algorithms that we have analyzed assume knowledge of the size of the cluster,
which is used to select the tuning parameters. It is a challenging problem of great practical relevance
to find data driven methods to select these tuning parameters.
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8 Appendix: Proofs of the main results

This section collects proofs of the main results stated in Sections 2, 3 and 4.

8.1 Proof of Theorem 1

We use a standard technique based on multiple hypothesis testing to obtain a lower bound on the
minimal signal strength (see Section 2.6. in [28]). Without loss of generality, we assume σ = 1. Set
K1 = [k1] and K2 = [k2], and let τ0 = β(k1k2)−1/2, so that the joint density of A is∏

ij

N (aij ; τ0 1I{i ∈ K1, j ∈ K2}, 1).

To lower bound the probability of error, we use the following relationship

inf
Ψ

sup
θ∈Θ

Pθ(Ψ(A) 6= (K1(θ),K2(θ))) ≥ inf
Ψ

max
θ∈{θ0,...,θM}

Pθ(Ψ(A) 6= (K1(θ),K2(θ)))

where {θ0, θ1, . . . , θM} is a carefully chosen subset of Θ. Specifically, we select θ0 = (β,K1,K2)
and we choose the remaining points {θ1, . . . , θM}, with M = n2 − k2, so that

θj−k2 = (β,K1,K
(j)
2 ), j = k2 + 1, . . . , n2,

where K(j)
2 := [k2 − 1] ∪ {j}. For a θ ∈ Θ, below we denote with (K1(θ),K2(θ)) the associated

bicluster.

Let φ(u) denote the density function of N (0, 1) with respect to the Lebesgue measure. With this,
we can compute the Kullback-Leibler divergence between Pθ0 and Pθj :

D(Pθ0 |Pθj ) =

∫
log

dPθ0
dPθj

dPθ0

=
∑
i∈K1

∫
log

φ(uik2 − τ0)

φ(uik2)
φ(uik2 − τ0)duik2

+
∑
i∈K1

∫
log

φ(uij)

φ(uij − τ0)
φ(uij)duij

=
∑
i∈K1

∫
(uik2τ0 −

τ2
0

2
)φ(uik2 − τ0)duik2

+
∑
i∈K1

∫
(
τ2
0

2
− uijτ0)φ(uij)duij

=
∑
i∈K1

∫
uik2τ0φ(uik2 − τ0)duik2

= k1τ
2
0 .

(15)

Now it follows from Theorem 2.5 in [28] that, if

τ0 ≤

√
α log(n2 − k2)

k1
,

then

inf
Ψ

max
θ∈{θ0,...,θM}

Pθ(Ψ(A) 6= (K1(θ),K2(θ))) ≥
√
M

1 +
√
M

(
1− 2α− 2α

logM

)
n1,n2→∞−−−−−−→ 1−2α.

We chose the subset {θ1, . . . , θM} by fixing the set K1 and alternating the last element of the set
K2. Alternatively, we can fix K2 and change the last element of the set K1 or alternate both K1 and
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K2. Repeating the argument above for these cases, we have that the probability of making an error
is bounded away from zero if

τ0 ≤ max

√α log(n2 − k2)

k1
,

√
α log(n1 − k1)

k2
,

√
α log(n1 − k1)(n2 − k1)

k1 + k2 − 1

 , (16)

which completes the proof.

8.2 Proof of Theorem 2

Without loss of generality, we assume that the noise variance σ = 1 and the true unknown sets
K1 = [k1] and K2 = [k2]. Define

F (K̃1, K̃2) :=
∑
i∈K1

∑
j∈K2

Aij −
∑
i∈K̃1

∑
j∈K̃2

Aij (17)

and note that an error is made if F (K̃1, K̃2) < 0, so that

P[Ψ(A) 6= (K1,K2)] = P[∪K̃1,K̃2
{F (K̃1, K̃2) < 0}].

Observe that F (K̃1, K̃2) depends only on the amount of overlap between K1 ×K2 and K̃1 × K̃2.
In particular, we have that

F (K̃1, K̃2) = F (d)
d
= N (dβ(k1k2)−1/2, 2dσ2) (18)

where d = k1k2 − |K1 ∩ K̃1||K2 ∩ K̃2|. Therefore, using the union bound, we have that

P[Ψ(A) 6= (K1,K2)] ≤
k1∑
i=0

Cik1C
k1−i
n1−k1

k2∑
j=0

Cjk2C
k2−j
n2−k2P[F (k1k2 − ij) < 0],

where, for readability, we have adopted the notation Cin =
(
n
i

)
.

Let τ0 = β(k1k2)−1/2. Using (18),

P(Ψ(A) 6= (K1,K2)) ≤
k1∑
i=0

Cik1C
k1−i
n1−k1

k2∑
j=0

Cjk2C
k2−j
n2−k2P(F (k1k2 − ij) < 0)

=

k1∑
i=0

k2∑
j=0

pij − pk1k2

with
pij = Cik1C

k1−i
n1−k1C

j
k2
Ck2−jn2−k2Φ̄(τ0

√
(k1k2 − ij)/2)

and Φ̄(·) is the survival function of N (0, 1). Therefore, P(Ψ(A) 6= (K1,K2)) can be bounded by

(k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

pij︸ ︷︷ ︸
T1

+ (k1 − 1) max
i=0,...,k1−1

pik2︸ ︷︷ ︸
T2

+ (k2 − 1) max
j=0,...,k2−1

pk1j︸ ︷︷ ︸
T3

.

We’ll show how to handle T1, while T2 and T3 can be handled in an similar way.

T1 = (k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

Cik1C
k1−i
n1−k1C

j
k2
Ck2−jn2−k2Φ̄(τ0

√
(k1k2 − ij)/2)

≤ (k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)2(k1−i)(n2 − k2)2(k2−j)Φ̄(τ0
√

(k1k2 − ij)/2)

≤ max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)3(k1−i)(n2 − k2)3(k2−j)Φ̄(τ0
√

(k1k2 − ij)/2)

≤ max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)3(k1−i)(n2 − k2)3(k2−j) exp

{
−τ

2
0

4

(
k1k2 −

ik2

2
− jk1

2

)}
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It is easy to see that the maximum is achieved at i = k1 − 1 and j = k2 − 1, which gives

T1 ≤ (n1 − k1)3(n2 − k2)3 exp

(
−τ

2
0 (k1 + k2)

8

)
.

Using the same reasoning

T2 ≤ (n1 − k1)3 exp

(
−τ

2
0 k2

4

)
and T3 ≤ (n2 − k2)3 exp

(
−τ

2
0 k1

4

)
.

Probability of making an error can be bounded as P(Ψ(A) 6= (K1,K2)) ≤ T1 + T2 + T3, which
concludes the proof.

8.3 Proof of Theorem 3

The proof follows from an applications of the union bound and the tail bound for the standard normal
random variable given in (25). We have that

min
(i,j)∈K1×K2

|aij | ≥ (k1k2)−1/2β − max
(i,j)∈K1×K2

|∆ij | ≥ (k1k2)−1/2β − σ
√

2 log
k1k2

δ

with probability 1− 2δ1/(
√

4π log(1/δ1)) where δ1 = δ/(k1k2). Similarly,

max
(i,j)6∈K1×K2

|aij | = max
(i,j)6∈K1×K2

|∆ij | ≤ σ
√

2 log
(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ

with probability 1− 2δ2/
√

4π log(1/δ2) where δ2 = δ/|{(i, j) 6∈ K1 ×K2}|. Combining the last
two displays, the theorem follows.

8.4 Proof of Theorem 4

First consider identifying the rows. The sum of the elements of each row without activation is a
draw from N (0, n2σ

2) and there are (n1 − k1) of these, while the sum of the elements of each row

with activation is a draw from N (4σmax
(√

n2 log(n1),
√
n2 log(n2)

(
n2

n1

)α)
, n2σ

2), and there
are k1 of these.

Consider the probability that all the rows without activation have sum strictly less than
2σ
√
n2 log(n1), and those with activation have sum strictly greater than the same quantity. If this

condition is satisfied then selecting the k1 rows with highest sum produces no errors. It is also easy
to see that to upper bound the probability of error it suffices to show that the probability of error is
small if the activation rows were drawn from N (4σ

√
n2 log(n1), n2σ

2).

The result follows from applying a standard Gaussian tail bound, followed by a union bound, i.e.

P(X − µ > t) ≤ exp

(
− t2

2σ2

)
therefore, noting the symmetry we can bound

P(error) ≤ n1 exp

(
−4σ2n2 log(n1)

2n2σ2

)
= n1(n1)−2 = δ1

A similar argument shows that we can bound δ2, the probability of making an error in identifying
the columns. The result follows.

8.5 Proof of Theorem 5

We prove the theorem using a constructive procedure. Our arguments are adapted from the argu-
ments used in the proof of Theorem 2 in [2]. We construct a rank one solution X̂ that is a global
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solution of the problem in (11). Using Theorem 22, which states the first order conditions for a
global optimum, we have that

−
(

0 A
A′ 0

)
+ λ

(
0 Ŝ

Ŝ′ 0

)
+ (π̂1 − π̂2)In1+n2

= K̂, (19)

where Ŝ ∈ ∂||X̂||1 is an element of the subgradient of the element-wise `1 norm evaluated at X̂, π̂1

and π̂2 are Lagrange multipliers associated with the constraint tr X̂ = 2, and K̂ is an element of the
normal cone to Sn+ evaluated at X̂. For Ŝ, we have that maxij |Ŝij | ≤ 1 and tr Ŝ′X12 = 1′|X|1.
From Eq (30), we have that K̂ = −Ẑ⊥BẐ⊥ where columns of Ẑ⊥ form orthonormal basis for the
null space of X̂ and B ∈ Sn+. See §12 for more details.

Suppose that the matrix X̂ is rank one and that the sparsity pattern of X̂12 correctly recovers K1

and K2. Then we have that ŜK1K2
= sûs′v̂ where sû = sign(ûK1

) and sv̂ = sign(v̂K2
). Further-

more, X̂12
K1K2

= ûK1
v̂′K2

where ûK1
is a left singular vector and v̂K2

is a right singular vector of
AK1K2 − λŜK1K2 associated with the largest singular vector. In fact, the following Lemma will
show that ûK1 and v̂K2 are left and right singular vectors of AK1K2−λsus′v where su = sign(uK1)
and sv = sign(vK2). That is, sû and sv̂ recover signs of su and sv. Note that singular vectors are
uniquely defined only up to a rotation, therefore, we use a convention that the first non-zero coordi-
nate of a left singular vector is positive.

Let M = AK1K2 − λ sign(uK1) sign(vK2)′ and let α = β/2. Since λ = β
2
√
k1k2

, we have that
M = αuK1

v′K2
+ ∆K1K2

. Let α̂ = σ1(M) be the largest singular value of M.
Lemma 7. Under the conditions of Theorem 5, we have that

||ûK1 − uK1 ||∞ = O

(√
log k1

k1k2 log(n1 − k2)(n2 − k2)

)
and

||v̂K2 − vK2 ||∞ = O

(√
log k2

k1k2 log(n1 − k2)(n2 − k2)

)
with probability 1−O(k−1

1 ).

Under the assumptions of Theorem 5 ||ûK1 − uK1 ||∞ = o(1/
√
k1) and ||v̂K2 − vK2 ||∞ =

o(1/
√
k2) as n1, n2 →∞, which shows that sû and sv̂ recover signs of su and sv.

Next, we set elements of ŜKC
1 K2

and ŜK1KC
2

such that (û′K1
,0′)′ and (v̂′K2

,0′)′ are singular vectors

of A−λŜ. Note that for these two singular vectors the choice of ŜKC
1 K

C
2

is irrelevant. Let ŜKC
1 K2

=

λ−1∆KC
1 K2

and ŜK1KC
2

= λ−1∆K1KC
2

. Using a normal tail bound (25) and the union bound

||ŜKC
1 K2
||∞ ≤

4σ
√
k1k2 log[(n1 − k1)k2]

β
and ||ŜK1KC

2
||∞ ≤

4σ
√
k1k2 log[(n2 − k2)k1]

β

with probability 1 − O[(n1 − k1)−1k−1
2 ]. Under the assumptions of the theorem we have that

||ŜK1KC
2
||∞ < 1 and ||ŜK1KC

2
||∞ < 1.

Let x̂ = (û′K1
,0′, v̂′K2

,0′)′, so that X̂ = x̂x̂′. We have established so far that x̂ is an eigenvector of

−
(

0 A
A′ 0

)
+ λ

(
0 Ŝ

Ŝ′ 0

)
.

Therefore, multiplying Eq. (19) by x̂ from right and taking a dot product with x̂ we have
that α̂ = π̂1 − π̂2. Finally, we need to set ŜKC

1 K
C
2

such that (19) holds. Set K̂ to the

left hand side of (19), then we need to show that K̂ � 0. By construction of X̂, we
have that K̂(K1K2)(K1K2) � 0. Therefore, we only need to show that K̂(KC

1 K
C
2 )(KC

1 K
C
2 ) �

13



K̂(KC
1 K

C
2 )(K1K2)(K̂(K1K2)(K1K2))

†K̂(K1K2)(KC
1 K

C
2 ). With the current choice of ŜKC

1 K2
and

ŜK1KC
2

, we can choose ŜKC
1 K

C
2

= λ−1∆KC
1 K

C
2

to satisfy (19). From (25) and the union bound

||ŜKC
1 K

C
2
||∞ ≤

4σ
√
k1k2 log[(n1 − k1)(n2 − k2)]

β

with probability 1 −O((n1 − k1)−1(n1 − k1)−1). Under the assumptions of the theorem we have
that ||ŜKC

1 K
C
2
||∞ < 1. This concludes the proof of the theorem.

8.6 Proof of Theorem 6

Without loss of generality assume σ = 1. From the proof of Theorem 5, it is sufficient to show that
ŜKC

1 K
C
2

cannot be chosen so that K̂(KC
1 K

C
2 )(KC

1 K
C
2 ) � 0. This is equivalent to showing that

min
||S

KC1 K
C
2
||∞≤1

max
||x||2=1

x′
[(

0 AKC
1 K

C
2

A′
KC

1 K
C
2

0

)
+ λ

(
0 SKC

1 K
C
2

S′
KC

1 K
C
2

0

)]
x > α̂ (20)

with probability tending to 1. The left hand side of Eq. (20) is lower bounded by

2||∆KC
1 K

C
2

+ λSKC
1 K

C
2
||F

min(
√
n1 − k1,

√
n2 − k2)

.

Entries of AKC
1 K

C
2

are soft-thresholded towards zero by SKC
1 K

C
2

to minimize the Frobenious norm.
Using (25),

P[|N (0, 1)| > 2λ] ≥ 4λ√
2π(4λ2+1)

exp(−2λ2) =: cλ.

Using the assumption that λ =
√
c log max(n1 − k1, n2 − k2), we get that cλ = (max(n1 −

k1, n2 − k2))−2cLn, where Ln = O(polylog(max(n1 − k1, n2 − k2))).

Let Z ∼ Bin(N, cλ) with N = (n2−k2)(n1−k1). From Lemma 18, Z > Ncλ/2 with probability
1 − 2 exp(−Ncλ/8). Conditioning on the event {Z > Ncλ/2}, the left hand side of (20) is lower
bounded by

2λ
√

2Ncλ

min(
√
n2 − k2,

√
n1 − k1)

= 2λ
√

2cλ max(
√
n1 − k1,

√
n2 − k2).

Plugging in the expression for cλ found above, we see that the left hand side of (20) is lower bounded
by (max(n1 − k1, n2 − k2))1/2−cLn.

Lemma 16 provides an upper bound for the right hand side of (20) of the form λ
√
k1k2 + 2(

√
k1 +√

k2) with probability 1− 2 exp(−(
√
k1 +

√
k2)2/2). We can conclude that (20) holds with proba-

bility tending to one, since

(max(n1 − k1, n2 − k2))1/2−cLn ≥
√
ck1k2 log max(n1 − k1, n2 − k2) + 2(

√
k1 +

√
k2)

for sufficiently large n1 and n2 as k1 = o(n1/2−c) and k2 = o(n1/2−c) under assumptions.

The theorem follows since β = 2λ
√
k1k2. The constant c can be chosen so that c < 1/2.

9 Appendix: Identifying Large Biclusters Without Normality Assumption

We now consider a computationally feasible nonparametric procedure for biclustering that makes
minimal assumptions on the distribution of the noise and on the form of the signal. When the
clusters are large in a sense specified by the theorem below, the procedure recovers the true bicluster
with large probabiliy.

Let F be any distribution with median zero and positive, continuous density. As before, we let ∆
be a n1 × n2 error matrix filled with iid draws from F . We now assume that

A = B + ∆

14



where B = {Bij}i∈[n1],j∈[n2] is such that Bij = 0 for (i, j) ∈ K1 ×K2 and

β ≡ min
i∈K1,j∈K2

Bij > 0.

Let Cj denote the number of positive entries in the jth column of A and let Ri denote the number
of positive entries in the tth row of A. Define Ψ(A) to consist of all rows such that Ri > r ≡
(n2/2) +

√
n2 log n2 and all columns such that Cj > c ≡ (n1/2) +

√
n1 log n1.

Let Z ∼ F and define π = P(Z + β > 0) = 1− F (β). Finally, we measure the signal strength by
the quantities

ψ1 = k1

[
1

2
− F (−β)

]
, ψ2 = k2

[
1

2
− F (−β)

]
.

Theorem 8. Suppose that the following conditions hold:

ψ1 >
√

4 log(k2n1) (21)

ψ2 >
√

4 log(k1n2)

ψ1 ≥
√
n1 log n1 (22)

ψ2 ≥
√
n2 log n2.

Then

P(Ψ(A) 6= (K1,K2) ≤ 4

(
1

n1
+

1

n2

)
.

Proof. Consider a null column that does not intersect the cluster. Then Cj ∼ Binomial(n1, 1/2).
By Hoeffding’s inequality, P(Cj > c) ≤ 1/n2

1. Similarly for a null row, P(Rj > r) ≤ 1/n2
2. By

the union bound, the probability of including any null row or column is at most n1/n
2
1 + n2/n

2
2 =

(1/n1) + (1/n2).

Now consider a non-null column. For simplicity assume that all nonzero βij are equal to the min-
imum value β. The extension to the general case is straightforward. Then Cj = U + V where
U ∼ Binomial(n1 − k1, 1/2) and V ∼ Binomial(k1, π) where π = P(Z + β > 0) = 1− F (−β).
Here, Z ∼ F . The probability of excluding column j is P(U + V < c). Now U + V is the sum
of independent but not identically distributed Bernoulli random variables. Applying Hoeffding’s
inequality for non identically distributed variables we have P(U + V < c) ≤ e−2(µ−c)2/n1 where

µ = E(U + V ) =
n1 − k1

2
+ k1π.

Substituting for µ and c and using the fact that π − 1/2 = 1/2− F (−β),

P(U + V < c) ≤ e−2(µ−c)2/n1

= exp

(
k1√
n1

(π − 1/2)− 1

2

√
log n1

)2

≤ exp

(
−k

2
1(π − 1/2)2

4n1

)
where we used (22). By (21), the last quantity is less than 1/(k2n1). Taking the union bound over
all the k2 columns in the cluster, the probability of missing a relevant column is at most 1/n1. A
similar bound applies to the rows.

10 Appendix: Technical proofs

10.1 Proof of Lemma 7

It follows directly from Weyl’s theorem (e.g. [25]) that

|α− α̂| ≤ σ1(∆K1K2). (23)
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Denote ûK1
and v̂K2

the singular vectors of M associated with α̂, that is,

Mv̂K2
= α̂ûK1

, and

M′ûK1 = α̂v̂K2 .
(24)

Let u⊥K1
∈ {a ∈ Rk1 : a ⊥ uK1 , , ‖a‖ = 1} and v⊥K2

∈ {a ∈ Rk2 : a ⊥ vK2 , ‖a‖ = 1}. With
this we write v̂K2 = cv1vK2 + cv0v⊥K2

and ûK1 = cu1uK1 + cu0u⊥K1
where (cv1)2 + (cv0)2 = 1 and

(cu1 )2 + (cu0 )2 = 1. Lemma 9 gives a lower bound on cu1 and cv1 and is proven below.

From (24) we have
αcv1uK1

+ ∆K1K2
v̂K2

= α̂ûK1

which further decomposes into

αcv1uK1
+ ∆K1K2

(cv1vK2
+ cv0v⊥K2

) = α̂(ûK1
− uK1

) + α̂uK1
.

Using Taylor series expansion α̂−1 . α−1 + σ1(∆K1K2
)α−2. Now

||ûK1
− uK1

||∞
≤ |α̂−1αcv1 − 1|||uK1 ||∞ + α̂−1|cv1|||∆K1K2vK2 ||∞ + α̂−1|cv0|||∆K1K2v

⊥
K2
||∞ + o(1)

≤ 2α−1σ1(∆K1K2)||uK1 ||∞ + α−1|||∆K1K2vK2 ||∞ + 2α−2σ1(∆K1K2)|||∆K1K2 |||∞,2 + o(1)

using (23) and Lemma 9. The three terms in the display above can be bounded using Lemma 16,
Lemma 13 and Lemma 14. Then

||ûK1 − uK1 ||∞ = α−1O
(√

k1||uK1
||∞ +

√
log k1 + α−1k2

)
= α−1O(

√
log k1)

with probability 1−O(k−1
1 ). A similar calculation gives a bound on ||v̂K2

−vK2
||∞. This completes

the proof of Lemma 7.

The following Lemma establishes a lower bound on û′K1
uK1 and v̂′K2

vK2 under our sign convec-
tion.
Lemma 9. We have that cu1 ≥ 1− 2α−1σ1(∆K1K2

) and cv1 ≥ 1− 2α−1σ1(∆K1K2
).

Proof of Lemma 9. From (24) we have

αû′K1
uK1

v′K2
v̂K2

+ û′K1
∆K1K2

v̂K2
= α̂.

Using the triangle inequality

|α− αû′K1
uK1

v′K2
v̂K2
| ≤ |α− α̂|+ |α̂− αû′K1

uK1
v′K2

v̂K2
|

≤ 2σ1(∆K1K2),

since |û′K1
∆K1K2

v̂K2
| ≤ σ1(∆K1K2

). Under our sign convention, this implies that

1− û′K1
uK1

v′K2
v̂K2
≤ 2α−1σ1(∆K1K2

).

We conclude that
û′K1

uK1 ≥ 1− 2α−1σ1(∆K1K2), and

v̂′K1
vK1 ≥ 1− 2α−1σ1(∆K1K2).

11 Appendix: Collection of concentration results

In this section, we collect useful results on tail bounds of various random quantities used throughout
the paper. We start by stating a lower and upper bound on the survival function of the standard
normal random variable. Let Z ∼ N (0, 1) be a standard normal random variable. Then for t > 0

1√
2π

t

t2 + 1
exp(−t2/2) ≤ P(Z > t) ≤ 1√

2π

1

t
exp(−t2/2). (25)

We will use the above inequality to bound some quantities involving norms of random matrices with
independent standard normal entries. We provide a few more definitions.
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Definition 10. Let ε be a positive number. A set X is an ε-net of a set Y if for any y ∈ Y , there
exists x ∈ X such that ||y − x|| ≤ ε.

The following result is the standard ε-net argument.

Lemma 11. Let N ⊂ Sn2−1 be an ε-net N of Sn2−1 and let A ∈ Rn1×n2 be a linear map. Then
there is a vector y ∈ N such that

||Ay|| ≥ (1− ε) max
x∈Sn2−1

||Ax||.

The minimum size of the ε-net is well-known.

Lemma 12. There is an ε-net of a unit sphere in d dimensions of size at most ( 3
ε )d.

Lemma 13. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard normal
random variables. Then for any fixed x ∈ Sn2−1,

P[||Ax||∞ ≥ t] ≤
2n1√
2πt

exp(−t2/2).

Proof of Lemma 13. Observe that Ax ∼ N(0, In1
). The result follows from an application of a

standard Gaussian tail bound and the union bound.

The following two results bound operator norms |||A|||∞,2 and |||A|||∞,∞.

Lemma 14. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard normal
random variables. Fix δ > 0. Then

|||A|||∞,2 ≤

√
8

(
log n1 + n2 log 6 + log

2√
2πδ

)
=: Kδ,n1,n2

(26)

with probability 1− δ/Kδ,n1,n2
.

Proof of Lemma 14. By definition, we have that

|||A|||∞,2 = max
||x||2≤1

||Ax||∞.

Let N ⊂ Sn2 be an ε-net of Sn2−1. Using Lemma 11 we have that

P[|||A|||∞,2 ≥ t] ≤ P[(1− ε)−1 max
y∈N
||Ay||∞ ≥ t].

Setting ε = 1
2 , applying Lemma 12, Lemma 13 and using the union bound, we have that

P[|||A|||∞,2 ≥ t] ≤
2n1√
2πt

6n2 exp(−t2/8).

We can conclude the proof by setting t = Kδ,n1,n2 .

Lemma 15. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard normal
random variables. Fix δ > 0. Then there exists a sufficiently large constant C such that

|||A|||∞,∞ ≤

√
8

(
n2 log n1 + n2

2 log 6 + n2 log
2√
2πδ

)
=:
√
n2Kδ,n1,n2

(27)

with probability 1− δ/Kδ,n1,n2
where Kδ,n1,n2

is defined in (26).

Proof of Lemma 15. For any x ∈ Rn2 , ||x||2 ≤
√
k||x||∞. Now

|||A|||∞,∞ = max
||x||∞≤1

||Ax||∞ ≤ max
||x||2≤

√
n2

||Ax||∞ =
√
n2|||A|||∞,2.

The result follows from Lemma 14.
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Lemma 16 ([12]). Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard
normal random variables. We have that

P[σ1(A) ≥
√
n1 +

√
n2 + t] ≤ 2 exp(−t2/2). (28)

Lemma 17. If zk ∼ Bin(k, πk), then for all k ≥ 1 and all πk ∈ (0, 1) it holds that

P[zk = 0] ≤ exp(−kπk).

Proof. P[zk = 0] = (1−πk)k = exp(−k log( 1
1−πk )) = exp(−k(πk+O(π2

k))) ≤ exp(−kπk).

Lemma 18. If zk ∼ Bin(k, πk), then

P[zk ≤ kπk − t] ≤ exp(−t2/(2kπk))

and
P[zk ≥ kπk + t] ≤ exp(−t2/(2(kπk + t/3))).

12 Appendix: Convex analysis

The following results are standard. We use them to derive the KKT condition for the optimization
problem in (11).

Definition 19. Let C be a convex set. The function δ(x|C) defined as

δ(x|C) =

{
0 if x ∈ C

+∞ if x 6∈ C

is called the indicator function of the convex set C.

Definition 20. Let ∂δ(x|C) denote the normal cone to C at x defined as

∂δ(a|C) = {y : 〈x− a, y〉 ≤ 0, ∀x ∈ C}.

The normal cone be equivalently defined as

∂δ(a|C) = {y : sup
x∈C
〈x, y〉 = 〈a, y〉}.

If a is interior to C then ∂δ(a|C) = {0}, and if a is exterior to C then ∂δ(a|C) = ∅
Let Sn+ be the cone of positive semi-definite symmetric matrices in Rn×n.

Theorem 21 ([13]). The normal cone to Sn+ is defined as

∂δ(A|Sn+) =

{
∅ if A 6∈ Sn+

{B : −B ∈ Sn+, tr AB = 0} if A ∈ Sn+.
(29)

Alternatively for A ∈ Sn+, equation (29) becomes

∂δ(A|Sn+) = {B = −ZΛZ′ : Λ ∈ Sn+} (30)

where columns of Z form orthonormal basis for the null space of A.

Theorem 22 ([23], Chapter 5). If Â solves the problem

min f(A)
subject to A ∈ Sn+, g(A) ≤ 0,

then Â is feasible and there exist matrices Ĝ ∈ ∂f(Â), B̂ ∈ ∂δ(Â|Sn+), C ∈ ∂g(Â) and a
multiplier π̂ ≥ 0, π̂g(Â) = 0 such that

Ĝ + B̂ + π̂Ĉ = 0.
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13 Appendix: Nuclear norm and `1 norm penalty

Under the model (1), the problem of biclustering can be thought of recovering a matrix that is both
low rank and sparse. As pointed out by a reviewer, from this point of view a natural combination of
the nuclear norm and the `1 norm leads to the following optimization problem

min
X∈R(n1+n2)×(n1+n2)

1

2
||A−X||2F + λ1||X||∗ + λ21

′|X|1. (31)

The norm ||X||∗ is the nuclear norm defined as the sum of the singular values of X, that is, if
X = UDV′ is the singular value decomposition of X, then ||X|| =

∑
iDii. The tuning parameter

λ1 control the rank of the solution and λ2 controls the sparsity of the solution. Compared to the
optimization procedure in (11), there is an additional tuning parameter that needs to be selected in
practice. Combination of the nuclear norm and the `1 norm was shown useful in robust PCA [10].
For the problem of biclustering, the formulation in (31) does not lead to improvement over (11) as
we show below.

We analyze the problem (31) in a similar way to the proof of Theorem 5. That is, we construct a
rank one solution X̂ that is a global solution of the objective (31). The following Lemma gives a
subgradient of the nuclear norm used in stating the first order conditions for a global optimum.
Lemma 23. If X = UDV′ is the singular value decomposition of X then the subdifferential of
|| · ||∗ is equal to

∂||X||∗ = {UV′ + Z : σ1(Z) ≤ 1, U′Z = 0 and ZV = 0}. (32)

Now, the first order condition for a global optimum of (31) is

X̂−A + λ1K̂ + λ2Ŝ = 0 (33)

where Ŝ ∈ ∂||X̂||1 and K̂ ∈ ∂||X̂||∗.

Suppose that the matrix X̂ is rank one and that the sparsity pattern of X̂ correctly recovers K1

and K2. Denote X̂ = α̂ûv̂′. Then we have that ŜK1K2
= sûs′v̂ where sû = sign(ûK1

) and
sv̂ = sign(v̂K2). Furthermore, from Lemma 23, we know that K̂ = ûv̂′ + Ẑ with σ1(Z) ≤ 1,
û′Z = 0 and Zv̂ = 0.

Observe that the problem (31) can be rewritten as

max
X∈R(n1+n2)×(n1+n2)

tr A′X− 1

2
tr X′X− λ1||X||∗ − λ21

′|X|1.

Under the assumption that X̂ = α̂ûv̂′ with û = (û′K1
,0′)′ and v̂ = (v̂′K2

,0′)′, the above equation
becomes

max
α̂,ûK1

,v̂K2

α̂û′K1
AK1K2

v̂′K2
−α̂2−1

2
λ1α̂−λ2α̂û′K1

sûs′v̂v̂K2
subject to ||ûK1

||2 = 1, ||v̂K2
||2 = 1.

(34)
The objective (31) is strongly convex, which implies that α̂, ûK1

and v̂K2
are unique if the global

solution is of rank one. This in turn implies that ûK1
and v̂K2

are left and right singular vectors of
AK1K2 −λ2sûs′v̂. Setting λ2 = β

2
√
k1k2

and α = β/2, we observe that the results of Lemma 7 hold
here. That is, under the conditions of Theorem 5, it holds that

||ûK1
− uK1

||∞ = O

(√
log k1

k1k2 log(n1 − k2)(n2 − k2)

)
and

||v̂K2 − vK2 ||∞ = O

(√
log k2

k1k2 log(n1 − k2)(n2 − k2)

)
with probability 1−O(k−1

1 ). With û and v̂ fixed, the problem (34) can be explicitly solved for α̂,

α̂ = σ1(αuK1v
′
K2

+ ∆K1K2)− λ1, (35)
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which gives us a constraint on the signal strength α and the tuning parameter λ1.

So far, we have constructed X̂K1K2
and ŜK1K2

. We need to verify that there is a matrix Ẑ that
satisfies (32) by plugging back X̂K1K2

and ŜK1K2
into (33). We will construct

Ẑ =

(
ẐK1K2

0

0 ẐKC
1 K

C
2

)
. (36)

From (33), we observe that

(α̂+ λ1)ûK1
v̂′K2
− αuK1

v′K2
−∆K1K2

= λ1ẐK1K2
.

It follows that we need λ1 = Ω(
√
k1 +

√
k2) to ensure that σ1(ẐK1K2) ≤ 1.

We have already seen in the proof of Theorem 5 that ŜKC
1 K2

= λ−1
2 ∆KC

1 K2
, ŜK1KC

2
=

λ−1
2 ∆K1KC

2
and ŜKC

1 K
C
2

= λ−1
2 ∆KC

1 K
C
2

are valid blocks of a subdifferential of the `1 norm.

Plugging back into (33), it follows that ẐKC
1 K

C
2

= 0.

We can conclude that under the conditions of Theorem 5 on the size of the bicluster and the signal
strength β with λ1 = O(

√
k1 +

√
k2) and λ2 = β

2
√
k1k2

, the solution X̂ of (31) is of rank one and
correctly recovers (K1,K2).

We can also show a similar result to Theorem 6, which establishes that the signal strength β cannot
be much smaller than the one given in Theorem 5. From (33) follows that

σ1(∆KC
1 K

C
2
− λ2ŜKC

1 K
C
2

) ≤ λ1

is necessary for X̂ to be of rank one and to correctly recover (K1,K2). From (35), we have that
λ < σ1(αuK1

v′K2
+ ∆K1K2

) for a solution to be of rank 1. Since σ1(αuK1
v′K2

+ ∆K1K2
) <

α + 2(
√
k1 +

√
k2) with high probability, we have that λ < α + 2(

√
k1 +

√
k2). However, it was

shown in the proof of Theorem 6 that

min
||S

KC1 K
C
2
||∞≤1

max
||x||2=1

x′
[(

0 AKC
1 K

C
2

A′
KC

1 K
C
2

0

)
+ λ

(
0 SKC

1 K
C
2

S′
KC

1 K
C
2

0

)]
x

> α+ 2(
√
k1 +

√
k2)

(37)

with probability tending to 1.
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