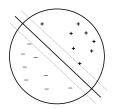
Algorithms and hardness results for parallel large-margin learning

Phil Long (Google) and Rocco Servedio (Columbia)

Setting:

- Target: γ -separated halfspace
- Domain: unit ball in Rⁿ



- Computational model: PRAM (parallel RAM)
- Question: can output an ϵ -accurate hypothesis using
 - poly $\left(\log n, \log \frac{1}{\gamma}, \log \frac{1}{\epsilon}\right)$ time
 - poly $\left(n, \frac{1}{\gamma}, \frac{1}{\epsilon}\right)$ processors?

Positive result

Dependence on $1/\epsilon$ already handled by Boost-by-majority [Fre95]. Revised goal:

- poly $\left(\log n, \log \frac{1}{\gamma}\right)$ time
- poly $\left(n, \frac{1}{\gamma}\right)$ processors.

Algorithm	Number of processors	Running time
Perceptron	$\operatorname{poly}(n,1/\gamma)$	$\tilde{O}(1/\gamma^2)(\log n)$
SmoothBoost	$\operatorname{poly}(n,1/\gamma)$	$\tilde{O}(1/\gamma^2)(\log n)$
LP	1	$\operatorname{poly}(n, \log(1/\gamma))$
This paper	$\operatorname{poly}(n,1/\gamma)$	$\tilde{O}(1/\gamma) + O(\log n)$

Poster T068

Algorithm

- Parallel boost-by-majority to handle ϵ -dependence [Fre95]
- · Weak learner:
 - Random projection [JL84,AV99]
 - Interior point method [Ren88]
 - Invert Hessian using parallel matrix inversion [Rei95]
 - Round intermediate solutions (preserve margin)

Negative result

- Some boosters [KM95,MM00,KS02,LS05,LS08] use decision trees or branching programs.
- Calls to weak learners from the same "layer" parallelizable.
- Q: Can save iterations?
- A: No (so $\Omega(1/\gamma^2)$ iterations needed)
- · Proof sketch:
 - · variables conditionally independent given label
 - in stage *i*, give variable *i* to all weak learners.