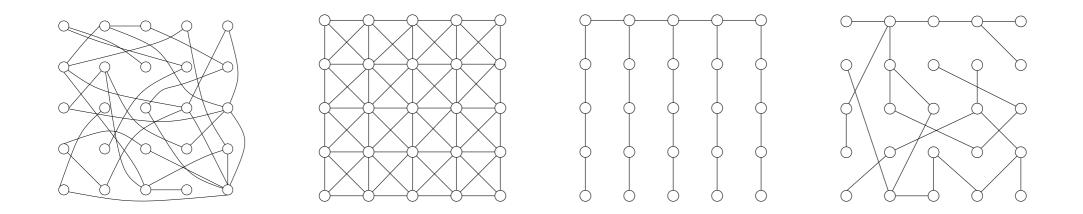

## On Learning Discrete Graphical Models Using Greedy Methods


**Ali Jalali, Christopher C. Johnson and Pradeep Ravikumar** University of Texas at Austin

- Two Contributions ::
  - Statistical estimation with **sparse** parameters :: analysis of forward-backward greedy algorithm; better than ell\_1!
  - Application to Discrete Graphical Model Selection



## Learning Discrete Graphical Models

- Discrete Random Variables  $X = (X_1, X_2, \dots, X_p)$
- Discrete Graphical Model ::  $P(X; \theta, \mathbf{G}) \propto \exp\left\{\sum_{(s,t)\in E(\mathbf{G})} \theta_{st}\phi_{st}(x_s, x_t)\right\}$
- Given :: **n** samples  $D := (X^{(1)}, \dots, X^{(n)})$  where  $X^{(i)} \sim P(X; \theta^*, \mathbf{G})$
- Problem :: Estimate underlying graph G



## Forward-Backward Greedy Algorithm

- Generalization of [T. Zhang, 2008] greedy algorithm for linear regression to general sparse statistical estimation
- Algorithm (Stopping Threshold \epsilon) ::
  - Forward: Find best co-ordinate to add ; add if improvement greater than \epsilon; set \delta = amount of improvement
  - Backward: Prune co-ordinates with loss-increase smaller than \delta

Theorem [Sparsistency]: Recovers support of true parameter, given restricted strong convexity, sufficient stopping threshold

## Comparison: Learning Discrete Graphical Models

|                      | ell_1                            | greedy                         | Better in all respects!                                                    |
|----------------------|----------------------------------|--------------------------------|----------------------------------------------------------------------------|
| Model<br>Assumptions | Irrepresentable<br>/ Incoherence | Restricted Strong<br>Convexity | i.e. don't use ell_1 regularization;<br>use greedy!                        |
| Sample<br>Complexity | $n = \Omega(d^3 \log p)$         | $n = \Omega(d^2 \log p)$       | Oh, and<br>Information-theoretically Optimal<br>(Santhanam, Wainwright 08) |
| Comp.<br>Complexity  | $O(p^4)$                         | $O(d^3 p^2)$                   | W100                                                                       |

