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NIPS 2011

On	  Learning	  Discrete	  Graphical	  Models	  Using	  Greedy	  Methods

• Two Contributions ::

• Statistical estimation with sparse parameters :: analysis of forward-backward 
greedy algorithm; better than ell_1!

• Application to Discrete Graphical Model Selection

X(i) ∼ P (X; θ∗)

min
θ:�θ�0≤k

L(θ;D)

Statistical Model ::

L(θ;D) =
1

n

n�

i=1

− logP (X(i); θ)Neg. Log-Likelihood ::

Sparsity Constrained MLE ::

ell_1? 

Non-Convex?

Bias; Restrictive Model 
Conditions



Learning Discrete Graphical Models 

• Discrete Random Variables 

• Discrete Graphical Model :: 

• Given :: n samples                                    where

• Problem :: Estimate underlying graph G 

X = (X1, X2, . . . , Xp)

D := (X(1), . . . , X(n))

Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . , Xp), identify the underlying
graph structure
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?

X(i) ∼ P (X; θ∗,G)

P (X; θ,G) ∝ exp





�

(s,t)∈E(G)

θstφst(xs, xt)








Forward-Backward Greedy Algorithm

• Generalization of [T. Zhang, 2008] greedy algorithm for linear regression to general sparse statistical 
estimation

• Algorithm (Stopping Threshold \epsilon) ::

‣ Forward: Find best co-ordinate to add ; add if improvement greater than \epsilon; set \delta = 
amount of improvement

‣ Backward: Prune co-ordinates with loss-increase smaller than \delta

Theorem [Sparsistency]: Recovers support 
of true parameter, given restricted strong 
convexity, sufficient stopping threshold 



Comparison: Learning Discrete Graphical Models

Visit us at Poster

ell_1 greedy

Model 
Assumptions

Irrepresentable
/ Incoherence

Restricted Strong 
Convexity

Sample 
Complexity

Comp.
Complexity

n = Ω(d2 log p)n = Ω(d3 log p)

O(d3 p2)O(p4)

Oh, and 
Information-theoretically Optimal 
(Santhanam, Wainwright 08)

Better in all respects!

i.e. don’t use ell_1 regularization; 
use greedy!


