
Clustered Multi-Task Learning Via Alternating Structure
Optimization: Supplemental Material

A. Algorithm Details

Alternating Optimization Method

Algorithm 1 Alternating Optimization Algorithm (altCMTL) for Convex CMTL
1: Input: W0, γ0 ∈ R, and max iteration numberq.
2: Output: M,W .
3: for i = 1 to q do
4: UpdateMi by solving Eq. (20).
5: UpdateWi by solving Eq. (19).
6: if stopping criteria satisfiedthen break the for loop.
7: end-for
8: SetM = Mi+1,W = Wi+1.

Accelerated Projected Gradient Method

Algorithm 2 Accelerated Projected Gradient Algorithm (apgCMTL) for Convex CMTL
1: Input: Z0, γ0 ∈ R, and max iteration numberq.
2: Output: Z.
3: SetZ1 = Z0, t−1 = 0, andt0 = 1.
4: for i = 1 to q do
5: Setµi = (ti−2 − 1)/ti−1, Si = Zi + µi(Zi − Zi−1).
6: while (true)
7: ComputeZ∗ = argminZ∈C Mγ,S(Z).
8: if f(Z∗) ≤ Mγ,Si

(Z∗) then break the while loop
9: elsesetγi = γi × 2.

10: end-if
11: end-while
12: SetZi+1 = Z∗ andγi+1 = γi.
13: if stopping criteria satisfiedthen break the for loop.

14: Setti =
1+

√
1+4t2

i−1

2 .
15: end-for
16: SetZ = Zi+1.

The optimization problem in Eq. (23) admits an analytical solution via solving a simple convex
projection problem. The main result is summarized in the following theorem.

Theorem 6.1. Given an arbitrary symmetric matrix̂MS ∈ R
m×m in Eq. (23), letM̂S = P Σ̂PT be

its eigen-decomposition, whereP ∈ R
m×m is orthogonal, and̂Σ = diag(σ̂1, · · · , σ̂m) ∈ R

m×m is
diagonal with the eigenvalues on its main diagonal. LetΣ∗ = diag(σ∗

1 , · · · , σ∗
m) ∈ R

m×m, where
{σ∗

i }mi=1 is the optimal solution to the following optimization problem:

min
{σi}

m∑

i=1

(σi − σ̂i)
2
, s.t.

m∑

i=1

σi = k, 0 ≤ σi ≤ 1, i = 1, · · · ,m. (25)

Then the global minimizer to Eq. (23) is given byM∗ = PΣ∗PT .

To prove the above theorem, we first introduce the following lemma:

Lemma 6.2. LetO(1) be the optimal objective value of the optimization problem:

min
T

‖T − E‖2F , s.t. tr (T ) = k, 0 � T � I, (26)
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and letO(2) be the optimal objective value of the optimization problem:

min
Ê

‖Ê − E‖2F , s.t. tr
(
Ê
)
= k, Ê = diag(ê1, · · · , êd), 0 ≤ êi ≤ 1. (27)

ThenO(1) = O(2).

Proof. According to the definition, the feasible domain of optimization (27) is a subset of the feasi-
ble domain of optimization (26), which indicatesO(2) ≥ O(1). LetT ∗ be the optimal solution to the

optimization (26), and̂T = diag(T ∗) be the diagonal matrix by setting the non-diagonal elements

of T ∗ to 0. It is evident thattr
(
T̂
)
= k and0 � T̂ � I hold. Notice thatT̂ is a feasible point in

optimization (27), we have following inequality:

O(1) = ‖T ∗ − E‖2F ≥ ‖T̂ − E‖2F ≥ O(2), O(1) ≥ O(2). (28)

ThereforeO(1) = O(2) must hold. This completes the proof.

We are now ready to prove Theorem 6.1:

Proof of Theorem 6.1.For an arbitraryMZ feasible for Eq. (23), we denote its eigen-decomposition
by MZ = QΛQT , whereQ ∈ R

m×m is orthogonal,Λ = diag(λ1, · · · , λm) ∈ R
m×m is diagonal

with the eigenvalues on its main diagonal. Because of the unitary invariant property of Frobenius
norm, the optimization in Eq. (23) can be equivalently represented as:

min
Λ,Q

∥∥∥PTQΛQTP − Σ̂
∥∥∥
2

F
,

s.t. tr (Λ) = k, Λ = diag(λ1, · · · , λm), 0 ≤ λi ≤ 1, QTQ = QQT = Im. (29)

According to Lemma 6.2, the optimization problems in Eq. (29) and Eq. (25) have the same optimal
objective value. It is easy to verify that the optimization problem in Eq. (29) is strictly convex, and
that the pairΛ = Σ∗, Q = P is a feasible solution. This means thatΛ = Σ∗, Q = P is the unique
global minimizer to Eq. (29). ThusM∗ = PΣ∗PT is the unique global minimizer to Eq. (23).

Direct Gradient Descent Method

Algorithm 3 Direct Gradient Descent Algorithm (graCMTL) for Convex CMTL
1: Input: W0, γ0 ∈ R, and max iteration numberq.
2: Output: M,W .
3: for i = 1 to q do
4: ComputeM∗

t by solving Eq. (20) usingWt−1.
5: Compute the gradient direction∇W gCMTL(Wt−1) = 2(ηI +M∗

t )
−1WT

t−1.
6: Perform a line search to determineLt.
7: Wt = Wt−1 + Lt∇W gCMTL(Wt−1).
8: if stopping criteria satisfiedthen break the for loop.
9: end-for

10: SetM = Mi+1,W = Wi+1.

B. Construction of Synthetic Cluster-Structured Data

Denote byŵc
i thei-th task from thec-th cluster.ŵc

i can be expressed as the sum of the cluster center
wc and the task-specific componentwc

i , i.e., ŵc
i = wc + wc

i . The cluster centerwc is generated as
follows: (1) set the value of the first20 entries inwc as zero; (2) select(d− 20)/5 entries from the
otherd−20 entries, and generate non-zero values fromN (0, 900) for the selected(d−20)/5 entries.
Note that we keepwc orthogonal to the other cluster centers by selecting the appropriate locations of
the non-zero entries. The task-specific componentwc

i is generated as follows: (1) generate non-zero
values fromN (0, 16) for the first20 entries; (2) generate non-zero values fromN (0, 16) for the
locations corresponding to the non-zero entries ofwc. For each task we generate 60 sample pairs
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(the data point and the response). Denote the data matrix andthe response vector byXi andyi,
respectively. The entries inXi are generated fromN (0, 1), and the entries inyi are generated as
yi = Xiw

c
i + ξi, whereξ ∼ N (0, 0.1) represents the noise vector.

C. Effectiveness Comparison on Sarcos Dataset

The Sarcos data is collected for an inverse dynamics prediction problem for a seven degrees-of-
freedom anthropomorphic robot arm. This data consists of 48933 observations corresponding to 7
joint torques; each of the observations is described by 21 features including 7 joint positions, 7 joint
velocities, and 7 joint accelerations. The prediction of each joint torque corresponds to one task.
Because using a few training samples already gives good performance, we vary the training sample
size in the set{10, 20, 50, 100}. The results are presented in Table 2. We can observe (1) whenthe
training sample size is relatively small, cCMTL outperforms other competing methods; (2) when
the training ratio is large, cCMTL and RidgeSTL are comparable; (3) RegMTL performs poorly in
all settings.

Table 2: Performance comparison on the Sarcos data in terms of nMSE and aMSE. Smaller nMSE
and aMSE indicate better performance. The regularization parameters of all methods are tuned
using 5-fold cross validation. The mean and standard deviation are calculated based on10 random
repetitions.

Measure Sample RidgeSTL RegMTL cCMTL
nMSE 10 2.3668± 0.3033 2.2310± 0.5008 2.1984± 1.0083

20 0.7409± 0.1461 0.8787± 0.2007 0.6710± 0.0740
50 0.2562± 0.0366 0.4387± 0.0509 0.2522± 0.0258
100 0.1735± 0.0068 0.3717± 0.0411 0.1784± 0.0097

aMSE 10 0.9151± 0.0718 0.9399± 0.1622 1.0803± 0.6384
20 0.4129± 0.0976 0.4796± 0.1267 0.3703± 0.0427
50 0.1457± 0.0259 0.2581± 0.0374 0.1432± 0.0198
100 0.0992± 0.0031 0.2133± 0.0242 0.1014± 0.0041
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